A Stochastic Multi-Objective Model for Optimal Design of Electronic Waste Reverse Supply Chain

Guardado en:
Detalles Bibliográficos
Publicado en:Sustainability vol. 17, no. 23 (2025), p. 10693-10731
Autor principal: Al-Refaie, Abbas
Otros Autores: Shabaneh Aya, Lepkova Natalija
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3280970284
003 UK-CbPIL
022 |a 2071-1050 
024 7 |a 10.3390/su172310693  |2 doi 
035 |a 3280970284 
045 2 |b d20250101  |b d20251231 
084 |a 231634  |2 nlm 
100 1 |a Al-Refaie, Abbas  |u Department of Industrial Engineering, University of Jordan, Amman 11942, Jordan 
245 1 |a A Stochastic Multi-Objective Model for Optimal Design of Electronic Waste Reverse Supply Chain 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The consumption of electronic products is growing rapidly, resulting in considerable amounts of electronic waste (e-waste). In addition, economic, environmental, and social perspectives increased the need to develop an effective reverse supply chain (RSC). This study, therefore, formulates a stochastic model for a multi-objective, multi-product, multi-period RSC for electronic waste (e-waste) under uncertainty in returns’ quantity, quality, and availability to repair. Three objective functions are considered: maximizing profit, maximizing social impact, and minimizing CO2 emissions. The end-of-life (EOL) household appliance firm was considered for illustration. Results showed that selling products’ parts and generating 123.025 tons of raw materials are expected to generate profit and revenue averages of USD 547,750 and USD 220,207, respectively. The multiple-product RSC is expected to increase profit by 2.3 times that of a single-product RSC. Finally, the effects of uncertainty in model parameters on the objective functions are examined. In conclusion, the proposed RSC of e-waste can effectively enhance sustainability. 
651 4 |a India 
653 |a Mathematical programming 
653 |a Design optimization 
653 |a Integer programming 
653 |a Sustainable development 
653 |a Mathematical models 
653 |a Product returns 
653 |a Costs 
653 |a Optimization techniques 
653 |a Washers & dryers 
653 |a Genetic algorithms 
653 |a Decision making 
653 |a Electronic waste 
653 |a Consumption 
653 |a Supply chains 
653 |a Manufacturers 
653 |a Linear programming 
653 |a Environmental impact 
653 |a Manufacturing 
653 |a Waste management 
653 |a Industrial plant emissions 
653 |a Case studies 
700 1 |a Shabaneh Aya  |u Maintenance Engineering and Quality Management, University of Jordan, Amman 11942, Jordan; ayashabaneh12@gmail.com 
700 1 |a Lepkova Natalija  |u Department of Construction Management and Real Estate, Vilnius Gediminas Technical University (VILNIUSTECH), 10223 Vilnius, Lithuania 
773 0 |t Sustainability  |g vol. 17, no. 23 (2025), p. 10693-10731 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3280970284/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3280970284/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3280970284/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch