Applying large language models to extract information from crop trait prioritization studies

Guardat en:
Dades bibliogràfiques
Publicat a:Plants, People, Planet vol. 8, no. 1 (Jan 1, 2026), p. 176-185
Autor principal: Farmer, Erin E.
Altres autors: Brown, David, Gore, Michael A., Tufan, Hale A.
Publicat:
John Wiley & Sons, Inc.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3281235932
003 UK-CbPIL
022 |a 2572-2611 
024 7 |a 10.1002/ppp3.70075  |2 doi 
035 |a 3281235932 
045 0 |b d20260101 
100 1 |a Farmer, Erin E.  |u Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA 
245 1 |a Applying large language models to extract information from crop trait prioritization studies 
260 |b John Wiley & Sons, Inc.  |c Jan 1, 2026 
513 |a Journal Article 
520 3 |a Societal Impact Statement Investigation of farmers', consumers', and other stakeholders' trait preferences is vital for the adoption and impact of improved crop varieties. While qualitative research methods are known to increase the depth and scope of information from respondents, only 5% of previous trait preference studies used qualitative data in their analyses. We show that AI‐based natural language processing, particularly GPTs, is both a time and cost‐effective mechanism for accurately analyzing open‐ended trait preference data. This will contribute to the selection and prioritization of breeding targets to better meet end‐user needs, with implications for food security and health outcomes globally. Crop trait preference research is critical for the development of improved crop varieties, guiding breeding programs in setting trait priorities and targets that represent farmers' and consumers' needs. However, there is a dearth of methodological harmonization in trait preference studies, leading to high heterogeneity in collected data and analysis frameworks, which constrains comparability between studies. Qualitative research tools using open‐ended questions are among the most common methods used to elucidate crop trait preferences, but only a fraction of these data are used in analysis. The ascendance of AI tools in data analysis provides an opportunity to enhance capitalization of these data from open‐ended question types. We use natural language processing (NLP) techniques, including generative pretrained transformer (GPT) models, to elucidate labels from open‐ended question responses and perform multilabel text classification. We compare these labels to pre‐codes from close‐ended questions, as well as to existing crop trait ontology terms. We find that analyzing responses to open‐ended questions using NLP leads to information gain, including an increase in diversity of traits and insight into their social functions. We conclude that using NLP‐based approaches would allow breeding teams to extract trait terms from open‐ended question responses efficiently and to compare these to both existing ontology terms and close‐ended survey data. Our findings reveal the importance of using open‐ended questions to inform survey codes in mixed methods research design for trait preference studies. 
610 4 |a OpenAI 
651 4 |a Nigeria 
653 |a Food security 
653 |a Text categorization 
653 |a Labels 
653 |a Datasets 
653 |a Plant breeding 
653 |a Ontology 
653 |a Language 
653 |a Mixed methods research 
653 |a Qualitative research 
653 |a Social sciences 
653 |a Data collection 
653 |a Chatbots 
653 |a Heterogeneity 
653 |a Agriculture 
653 |a Data analysis 
653 |a Qualitative analysis 
653 |a Research methodology 
653 |a Crops 
653 |a Cassava 
653 |a Large language models 
653 |a Research methods 
653 |a Preferences 
653 |a Consumers 
653 |a Research design 
653 |a Surveys 
653 |a Natural language processing 
653 |a Information processing 
653 |a Farmers 
653 |a Households 
653 |a Social 
700 1 |a Brown, David  |u Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA 
700 1 |a Gore, Michael A.  |u Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA 
700 1 |a Tufan, Hale A.  |u Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA 
773 0 |t Plants, People, Planet  |g vol. 8, no. 1 (Jan 1, 2026), p. 176-185 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3281235932/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3281235932/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3281235932/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch