Assessment of Learner Engagement and Expert Evaluations of AI-Generated Versus Human-Created Interactive Content in an Online Course

Guardado en:
Detalles Bibliográficos
Publicado en:International Review of Research in Open and Distributed Learning vol. 26, no. 4 (Nov 2025), p. 1-24
Autor principal: Aydemir, Hamza
Otros Autores: Kır, Şeyda
Publicado:
International Review of Research in Open and Distance Learning
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3281362422
003 UK-CbPIL
022 |a 1492-3831 
035 |a 3281362422 
045 2 |b d20251101  |b d20251130 
084 |a 68600  |2 nlm 
100 1 |a Aydemir, Hamza 
245 1 |a Assessment of Learner Engagement and Expert Evaluations of AI-Generated Versus Human-Created Interactive Content in an Online Course 
260 |b International Review of Research in Open and Distance Learning  |c Nov 2025 
513 |a Journal Article 
520 3 |a Generative artificial intelligence (GenAI) has introduced a novel aspect to educational methodologies and sparked fresh dialogues regarding the creation and evaluation of instructional resources. This project seeks to investigate the impact of GenAI on the development and assessment of online course materials and learners’ engagement with these materials in the online learning environment. The study analyzed GenAI-generated multiple-choice questions, fill-in-the-blank exercises, and true-false activities during 3 weeks of a 14-week online course. Subject matter experts assessed these documents in regards to content, relevance, and clarity. Data was collected through an online form with open-ended questions. The interactions of learners with the GenAI-created learning activities were analyzed using log records of the learning management system and compared to the content provided by the course instructor regarding interaction levels. The study’s conclusions elucidate the capability of GenAI technologies to produce course-specific content and their efficacy in education. We stress that human specialists’ critical evaluations play a crucial part in improving the pedagogical validity of GenAI-powered learning materials. Further research into topics including the ethical dimension, the effect on academic achievement, and student motivation is recommended. 
653 |a Pedagogy 
653 |a Students 
653 |a Mobile communications networks 
653 |a Instructional design 
653 |a Learning management systems 
653 |a Ethics 
653 |a Distance learning 
653 |a Generative artificial intelligence 
653 |a Teachers 
653 |a Chatbots 
653 |a Case studies 
653 |a Educational objectives 
653 |a Personalized learning 
653 |a Educational materials 
653 |a Content creation 
653 |a Multiple choice 
653 |a Qualitative research 
653 |a Education 
653 |a Learning Analytics 
653 |a Learning Activities 
653 |a Educational Practices 
653 |a Data Collection 
653 |a Intelligent Tutoring Systems 
653 |a Influence of Technology 
653 |a Distance Education 
653 |a Addition 
653 |a Doctoral Programs 
653 |a Computers 
653 |a Learning Experience 
653 |a Educational Technology 
653 |a Electronic Equipment 
653 |a Engineering Technology 
653 |a Artificial Intelligence 
653 |a Student Motivation 
653 |a Data Analysis 
653 |a Instructional Material Evaluation 
653 |a Language Processing 
653 |a Course Content 
653 |a Learner Engagement 
653 |a Educational Strategies 
700 1 |a Kır, Şeyda 
773 0 |t International Review of Research in Open and Distributed Learning  |g vol. 26, no. 4 (Nov 2025), p. 1-24 
786 0 |d ProQuest  |t Education Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3281362422/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3281362422/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3281362422/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch