Numerically exact configuration interaction at quadrillion-determinant scale

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature Communications vol. 16, no. 1 (2025), p. 11016-11028
Hlavní autor: Shayit, Agam
Další autoři: Liao, Can, Upadhyay, Shiv, Hu, Hang, Zhang, Tianyuan, DePrince III, A. Eugene, Yang, Chao, Li, Xiaosong
Vydáno:
Nature Publishing Group
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3281495096
003 UK-CbPIL
022 |a 2041-1723 
024 7 |a 10.1038/s41467-025-65967-7  |2 doi 
035 |a 3281495096 
045 2 |b d20250101  |b d20251231 
084 |a 145839  |2 nlm 
100 1 |a Shayit, Agam  |u Department of Physics, University of Washington, Seattle, WA, USA (ROR: https://ror.org/00cvxb145) (GRID: grid.34477.33) (ISNI: 0000 0001 2298 6657) 
245 1 |a Numerically exact configuration interaction at quadrillion-determinant scale 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a The combinatorial growth of configuration interaction (CI) has long limited this formally exact quantum chemistry method to only the smallest molecules. Here, we report a numerically exact CI calculation exceeding one quadrillion (1015) determinants, made possible by a lossless categorical compression strategy within the small-tensor-product distributed active space (STP-DAS) framework. This approach overcomes the traditional memory bottlenecks of CI by a numerically exact compression of the wavefunction representation and reformulating the most computationally demanding matrix–vector operations. Using this method, we performed a fully relativistic CI calculation of the ground state of HBrTe with over 1015 complex-valued determinants in just 34.5 h on 1000 computing nodes—the largest CI calculation ever reported. We further achieved fast computation for systems with hundreds of billions of determinants on only a few compute nodes. Extensive benchmarks confirm that the method retains full numerical exactness while cutting memory and computational cost by orders of magnitude. Compared to previous state-of-the-art CI calculations, this work achieves a 1000 times increase in CI space, a 106-fold increase in floating-point operations performed, and a 106-fold improvement in computational speed.Due to the combinatorial scaling of configuration interaction methods, formally exact quantum chemistry results are only available for small systems. Here, the authors present an implementation using categorical compression, enabling efficient modeling of many electron systems. 
653 |a Benchmarks 
653 |a Computer memory 
653 |a Computer peripherals 
653 |a Combinatorial analysis 
653 |a Hilbert space 
653 |a Configuration interaction 
653 |a Quantum chemistry 
653 |a Tensors 
653 |a Nodes 
653 |a Decomposition 
653 |a Computing costs 
653 |a Computer applications 
653 |a Algorithms 
653 |a Compression 
653 |a Determinants 
653 |a Floating point arithmetic 
653 |a Wave functions 
653 |a Environmental 
700 1 |a Liao, Can  |u Department of Chemistry, University of Washington, Seattle, WA, USA (ROR: https://ror.org/00cvxb145) (GRID: grid.34477.33) (ISNI: 0000 0001 2298 6657) 
700 1 |a Upadhyay, Shiv  |u Department of Chemistry, University of Washington, Seattle, WA, USA (ROR: https://ror.org/00cvxb145) (GRID: grid.34477.33) (ISNI: 0000 0001 2298 6657) 
700 1 |a Hu, Hang  |u Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA (ROR: https://ror.org/00cvxb145) (GRID: grid.34477.33) (ISNI: 0000 0001 2298 6657) 
700 1 |a Zhang, Tianyuan  |u Department of Chemistry, University of Washington, Seattle, WA, USA (ROR: https://ror.org/00cvxb145) (GRID: grid.34477.33) (ISNI: 0000 0001 2298 6657) 
700 1 |a DePrince III, A. Eugene  |u Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA (ROR: https://ror.org/05g3dte14) (GRID: grid.255986.5) (ISNI: 0000 0004 0472 0419) 
700 1 |a Yang, Chao  |u Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA (ROR: https://ror.org/02jbv0t02) (GRID: grid.184769.5) (ISNI: 0000 0001 2231 4551) 
700 1 |a Li, Xiaosong  |u Department of Chemistry, University of Washington, Seattle, WA, USA (ROR: https://ror.org/00cvxb145) (GRID: grid.34477.33) (ISNI: 0000 0001 2298 6657) 
773 0 |t Nature Communications  |g vol. 16, no. 1 (2025), p. 11016-11028 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3281495096/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3281495096/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3281495096/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch