Towards modular composite wall systems: thermal properties and boundary conditions for fire resistance simulation

Guardado en:
Detalles Bibliográficos
Publicado en:Cogent Engineering vol. 12, no. 1 (Dec 2025)
Autor principal: Fan, Yabin
Otros Autores: Wang, Hui, Wang, Yong
Publicado:
Taylor & Francis Ltd.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3282097171
003 UK-CbPIL
022 |a 2331-1916 
024 7 |a 10.1080/23311916.2025.2572293  |2 doi 
035 |a 3282097171 
045 2 |b d20251201  |b d20251231 
084 |a 283736  |2 nlm 
100 1 |a Fan, Yabin  |u State Grid Economic and Technological Research Institute Co., Ltd , Beijing , China 
245 1 |a Towards modular composite wall systems: thermal properties and boundary conditions for fire resistance simulation 
260 |b Taylor & Francis Ltd.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Abstract This article investigates the fire resistance performance of composite walls, focusing on the thermal properties of wall materials and the critical boundary conditions for heat transfer numerical simulations. As the construction industry increasingly adopts modular and light-gauge steel frame structures, evaluating the fire resistance of composite walls under high-temperature conditions has become essential. This study consolidates the thermal properties of widely used wall materials such as fiber cement boards, calcium silicate boards, rock wool, and autoclaved aerated concrete, with particular attention to the temperature dependency of these properties. Notably, an equivalent area method was applied to optimize the temperature-dependent specific heat capacity of ALC boards, preserving the original thermal response characteristics while ensuring positive values across the temperature range. Given the limitations and high costs associated with full-scale fire resistance testing, numerical simulation has emerged as an effective alternative. This article provides optimal parameter recommendations based on a comprehensive literature analysis, aiming to enhance the accuracy of thermal simulations and support future fire safety research. 
653 |a Boards 
653 |a Aeration 
653 |a Fire resistance 
653 |a Temperature dependence 
653 |a Modular systems 
653 |a Optimization 
653 |a Thermodynamic properties 
653 |a Boundary conditions 
653 |a Steel frames 
653 |a Frame structures 
653 |a Calcium silicates 
653 |a Modular structures 
653 |a High temperature 
653 |a Walls 
653 |a Thermal response 
700 1 |a Wang, Hui  |u State Grid Economic and Technological Research Institute Co., Ltd , Beijing , China 
700 1 |a Wang, Yong  |u College of Civil Engineering, Nanjing Tech University , Nanjing , China 
773 0 |t Cogent Engineering  |g vol. 12, no. 1 (Dec 2025) 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3282097171/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3282097171/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch