Enhanced temporal encoding-decoding for survival analysis of multimodal clinical data in smart healthcare

Uloženo v:
Podrobná bibliografie
Vydáno v:Visual Computing for Industry Biomedicine, and Art vol. 8, no. 1 (Dec 2025), p. 28
Hlavní autor: Zhang, Xiaofeng
Další autoři: Pan, Zijie, Tian, Yuhang, Wang, Lili, Xu, Tingting, Chen, Li, Liao, Xiangyun, Jiang, Tianyu
Vydáno:
Springer Nature B.V.
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3282438013
003 UK-CbPIL
022 |a 2524-4442 
024 7 |a 10.1186/s42492-025-00209-7  |2 doi 
035 |a 3282438013 
045 2 |b d20251201  |b d20251231 
100 1 |a Zhang, Xiaofeng  |u Nankai University, College of Artificial Intelligence, Tianjin 300350, China (GRID:grid.216938.7) (ISNI:0000 0000 9878 7032); Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (GRID:grid.458489.c) (ISNI:0000 0001 0483 7922) 
245 1 |a Enhanced temporal encoding-decoding for survival analysis of multimodal clinical data in smart healthcare 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Effective survival analysis is essential for identifying optimal preventive treatments within smart healthcare systems and leveraging digital health advancements; however, existing prediction models face limitations, primarily relying on ensemble classification techniques with suboptimal performance in both target detection and predictive accuracy. To address these gaps, this paper proposes a multimodal framework that integrates enhanced facial feature detection and temporal predictive modeling. For facial feature extraction, this study developed a lightweight face-region convolutional neural network (FRegNet) specialized in detecting key facial components, such as eyes and lips in clinical patients that incorporates a residual backbone (Rstem) to enhance feature representation and a facial path aggregated feature pyramid network for multi-resolution feature fusion; comparative experiments reveal that FRegNet outperforms state-of-the-art target detection algorithms, achieving average precision (AP) of 0.922, average recall of 0.933, mean average precision (mAP) of 0.987, and precision of 0.98–significantly surpassing other mask region-based convolutional neural networks (RCNN) variants, such as mask RCNN-ResNeXt with AP of 0.789 and mAP of 0.957. Based on the extracted facial features and clinical physiological indicators, this study proposes an enhanced temporal encoding-decoding (ETED) model that integrates an adaptive attention mechanism and a gated weighting mechanism to improve predictive performance, with comparative results demonstrating that the ETED variant incorporating facial features (ETEncoding-Decoding-Face) outperforms traditional models, achieving an accuracy of 0.916, precision of 0.850, recall of 0.895, F1 of 0.884, and area under the curve (AUC) of 0.947–outperforming gradient boosting with an accuracy of 0.922, but AUC of 0.669, and other classifiers in comprehensive metrics. The results confirm that the multimodal dataset (facial features + physiological indicators) significantly enhances the prediction accuracy of the seven-day survival conditions of patients. Correlation analysis reveals that chronic health evaluation and mean arterial pressure are positively correlated with survival, while temperature, Glasgow Coma Scale, and fibrinogen are negatively correlated. 
653 |a Physiology 
653 |a Feature extraction 
653 |a Deep learning 
653 |a Brain cancer 
653 |a Disease 
653 |a Cancer therapies 
653 |a Artificial neural networks 
653 |a Vital signs 
653 |a Heart failure 
653 |a Survival 
653 |a Survival analysis 
653 |a Jaundice 
653 |a Recall 
653 |a Accuracy 
653 |a Patients 
653 |a Cellular biology 
653 |a Artificial intelligence 
653 |a Health care 
653 |a Prediction models 
653 |a Neural networks 
653 |a Classification 
653 |a Target detection 
653 |a Edema 
653 |a Fibrinogen 
653 |a Encoding-Decoding 
653 |a Integrated approach 
653 |a Ultrasonic imaging 
653 |a Correlation analysis 
700 1 |a Pan, Zijie  |u Emergency Department, the Ninth Medical Center of Chinese PLA General Hospital, Beijing 100101, China (GRID:grid.414252.4) (ISNI:0000 0004 1761 8894) 
700 1 |a Tian, Yuhang  |u General Medicine Department, the First Medical Center of the PLA General Hospital, Beijing 100039, China (GRID:grid.414252.4) (ISNI:0000 0004 1761 8894) 
700 1 |a Wang, Lili  |u General Medicine Department, the First Medical Center of the PLA General Hospital, Beijing 100039, China (GRID:grid.414252.4) (ISNI:0000 0004 1761 8894) 
700 1 |a Xu, Tingting  |u General Medicine Department, the First Medical Center of the PLA General Hospital, Beijing 100039, China (GRID:grid.414252.4) (ISNI:0000 0004 1761 8894) 
700 1 |a Chen, Li  |u General Medicine Department, the First Medical Center of the PLA General Hospital, Beijing 100039, China (GRID:grid.414252.4) (ISNI:0000 0004 1761 8894) 
700 1 |a Liao, Xiangyun  |u Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (GRID:grid.458489.c) (ISNI:0000 0001 0483 7922); Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen 518055, China (GRID:grid.458489.c) (ISNI:0000 0001 0483 7922) 
700 1 |a Jiang, Tianyu  |u General Medicine Department, the First Medical Center of the PLA General Hospital, Beijing 100039, China (GRID:grid.414252.4) (ISNI:0000 0004 1761 8894) 
773 0 |t Visual Computing for Industry Biomedicine, and Art  |g vol. 8, no. 1 (Dec 2025), p. 28 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3282438013/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3282438013/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3282438013/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch