Advanced Optimization for Big Data Streams with Quantum Insights for Real-time Big Data Analytics

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ADCAIJ : Advances in Distributed Computing and Artificial Intelligence Journal vol. 14 (2025), p. e32876-e32891
1. Verfasser: Acharya, Malika
Weitere Verfasser: Mohbey, Krishna Kumar
Veröffentlicht:
Ediciones Universidad de Salamanca
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3282913672
003 UK-CbPIL
022 |a 2255-2863 
024 7 |a 10.14201/adcaij.32876  |2 doi 
035 |a 3282913672 
045 2 |b d20250101  |b d20251231 
100 1 |a Acharya, Malika 
245 1 |a Advanced Optimization for Big Data Streams with Quantum Insights for Real-time Big Data Analytics 
260 |b Ediciones Universidad de Salamanca  |c 2025 
513 |a Journal Article 
520 3 |a Big data analytics encounters scalability, latency, and privacy challenges, especially within real-time streaming contexts. We propose the Privacy-Aware Quantum Stream (PAQS), a distributed framework inspired by quantum principles, to overcome these obstacles. PAQS utilizes quantum superposition to effectively represent high-dimensional data, quantum entanglement for sophisticated correlation analysis and anomaly detection, and federated learning combined with homomorphic encryption to maintain privacy without compromising performance. The adaptive switching mechanism balances quantum-inspired and classical processing according to sensitivity and dimensionality criteria. Experiments are conducted on three datasets—OpenStreetMap, MIMIC-III, and KITTI, which show significant improvements: a throughput of 2. 53 TB/sec, a 60 % reduction in latency, an anomaly detection accuracy of 92. 3 %, and an 85. 4 % decrease in privacy violations when compared to baselines. These findings validate that PAQS provides consistent, secure, and scalable real-time analytics, positioning it as a strong solution for smart cities, healthcare, and autonomous transportation applications. 
653 |a Digital mapping 
653 |a Transportation applications 
653 |a Data transmission 
653 |a Quantum entanglement 
653 |a Big Data 
653 |a Anomalies 
653 |a Real time 
653 |a Federated learning 
653 |a Quantum mechanics 
653 |a Privacy 
653 |a Correlation analysis 
700 1 |a Mohbey, Krishna Kumar 
773 0 |t ADCAIJ : Advances in Distributed Computing and Artificial Intelligence Journal  |g vol. 14 (2025), p. e32876-e32891 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3282913672/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3282913672/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch