Integrated Ensemble Strategy for Breast Cancer Detection Using Dimensionality Reduction Technique

Salvato in:
Dettagli Bibliografici
Pubblicato in:ADCAIJ : Advances in Distributed Computing and Artificial Intelligence Journal vol. 14 (2025), p. e31899-e31916
Autore principale: Zulfikar Ali Ansari
Altri autori: Arif, Mohammad, Nagendra Babu Rajaboina, Shaikh, Anwar Ahamed, Singh, Yaduvir
Pubblicazione:
Ediciones Universidad de Salamanca
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3282913687
003 UK-CbPIL
022 |a 2255-2863 
024 7 |a 10.14201/adcaij.31899  |2 doi 
035 |a 3282913687 
045 2 |b d20250101  |b d20251231 
100 1 |a Zulfikar Ali Ansari 
245 1 |a Integrated Ensemble Strategy for Breast Cancer Detection Using Dimensionality Reduction Technique 
260 |b Ediciones Universidad de Salamanca  |c 2025 
513 |a Journal Article 
520 3 |a Breast cancer remains a critical global health concern, requiring advanced and reliable diagnostic methods for early detection and effective intervention. This work introduces an integrated ensemble framework that combines multiple dimensionality reduction (DR) techniques, including Principal Component Analysis (PCA), Non-negative Matrix Factorization (NMF), and Singular Value Decomposition (SVD), with robust machine learning (ML) classifiers for improved breast cancer detection. The publicly available Wisconsin Breast Cancer Dataset (WBCD) was utilized, with rigorous data preprocessing performed to address missing values, anomalies, and class imbalance through stratified sampling and median imputation. To mitigate overfitting and underfitting, dimensionality reduction was coupled with cross-validation and ensemble strategies. The predictive performance of Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), and Multi-Layer Perceptron (MLP) was systematically evaluated. Experimental results show that SVM consistently achieves a maximum accuracy of 97. 9 % across all applied DR techniques, while MLP and LR also reach 97. 9 % accuracy with PCA and NMF, though MLP exhibits performance variability depending on the selected DR method. The findings provide practical guidance for healthcare practitioners and researchers, supporting the adoption of explainable and scalable AI-driven diagnostic tools. Limitations include the reliance on a single dataset and the need for further validation on larger and more diverse clinical cohorts. Future work will focus on enhancing model interpretability, external validation, and real-world deployment in resource-constrained settings. 
653 |a Datasets 
653 |a Singular value decomposition 
653 |a Principal components analysis 
653 |a Machine learning 
653 |a Support vector machines 
653 |a Multilayers 
653 |a Public health 
653 |a Multilayer perceptrons 
653 |a Breast cancer 
653 |a Decision trees 
700 1 |a Arif, Mohammad 
700 1 |a Nagendra Babu Rajaboina 
700 1 |a Shaikh, Anwar Ahamed 
700 1 |a Singh, Yaduvir 
773 0 |t ADCAIJ : Advances in Distributed Computing and Artificial Intelligence Journal  |g vol. 14 (2025), p. e31899-e31916 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3282913687/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3282913687/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch