Bibliometric Mapping of Technology Acceptance in Artificial Intelligence, Machine Learning, and Neuronal Networks: A Comparative Analysis of WoS and Scopus (1999–2023)

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ADCAIJ : Advances in Distributed Computing and Artificial Intelligence Journal vol. 14 (2025), p. e32708-e32735
1. Verfasser: Teixidó, Mercè
Weitere Verfasser: Borri, Emiliano, Díaz, Manel, Mateu, Carles, Cabeza, Luisa F
Veröffentlicht:
Ediciones Universidad de Salamanca
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3282913893
003 UK-CbPIL
022 |a 2255-2863 
024 7 |a 10.14201/adcaij.32708  |2 doi 
035 |a 3282913893 
045 2 |b d20250101  |b d20251231 
100 1 |a Teixidó, Mercè 
245 1 |a Bibliometric Mapping of Technology Acceptance in Artificial Intelligence, Machine Learning, and Neuronal Networks: A Comparative Analysis of WoS and Scopus (1999–2023) 
260 |b Ediciones Universidad de Salamanca  |c 2025 
513 |a Journal Article 
520 3 |a Background: This study presents a systematic bibliometric mapping and analysis on the acceptance of technology in the field of artificial intelligence (AI), machine learning (ML) and neuronal networks (NN), evaluating the evolution and research trends within this interdisciplinary field. Methods: Using data from the Web of Science (WoS) and Scopus databases, we identify important authors, institutions, and geographic distributions, highlighting key research areas and emerging themes. The analysis was performed using VOSviewer (v. 1. 6. 20) and RStudio (v. 4. 1. 3) with the Bibliometrix package. Results: Our analysis reveals a steady increase in scientific output between 1999 and 2023, with a notable acceleration in recent years, indicating a growing interest in how AI technologies are accepted in various domains. The research illuminates the central role of technology and AI acceptance models, as demonstrated by thematic and keyword analyses. The study reveals a pronounced focus on the technological facets of AI acceptance, alongside discernible gaps in research linking energy, climate mitigation, and sustainability. Differences in findings underline the characteristics of the WoS and Scopus databases. Conclusions: The findings argue for a diversified research agenda to overcome these identified gaps, fostering a more comprehensive understanding of technology acceptance in the age of AI. This research charts a course for future explorations within this critical interdisciplinary field. 
653 |a Mapping 
653 |a Geographical distribution 
653 |a Machine learning 
653 |a Bibliometrics 
653 |a Neural networks 
653 |a Artificial intelligence 
653 |a Databases 
653 |a Interdisciplinary aspects 
700 1 |a Borri, Emiliano 
700 1 |a Díaz, Manel 
700 1 |a Mateu, Carles 
700 1 |a Cabeza, Luisa F 
773 0 |t ADCAIJ : Advances in Distributed Computing and Artificial Intelligence Journal  |g vol. 14 (2025), p. e32708-e32735 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3282913893/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3282913893/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch