Diabetic Retinopathy Detection with Uncertainty scores: A Combined Approach Using Transfer Learning and Ensemble Calibration

Salvato in:
Dettagli Bibliografici
Pubblicato in:ADCAIJ : Advances in Distributed Computing and Artificial Intelligence Journal vol. 14 (2025), p. e32209-e32235
Autore principale: Verma, Preeti
Altri autori: Sivasankar Elango, Singh, Kunwar
Pubblicazione:
Ediciones Universidad de Salamanca
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3282913941
003 UK-CbPIL
022 |a 2255-2863 
024 7 |a 10.14201/adcaij.32209  |2 doi 
035 |a 3282913941 
045 2 |b d20250101  |b d20251231 
100 1 |a Verma, Preeti 
245 1 |a Diabetic Retinopathy Detection with Uncertainty scores: A Combined Approach Using Transfer Learning and Ensemble Calibration 
260 |b Ediciones Universidad de Salamanca  |c 2025 
513 |a Journal Article 
520 3 |a The rising prevalence of diabetes has made Diabetic Retinopathy (DR) a major cause of blindness, underscoring the necessity for a computer-aided diagnostic system that can support clinical diagnoses without requiring extensive human effort. Many researchers have turned to deep learning to create automated screening and diagnostic tools for DR. However, for such systems to be truly effective in clinical practice, they must provide highly accurate assessments and well-calibrated estimates of uncertainty. Unfortunately, deep neural networks often tend to be overconfident in their predictions and are not easily amenable to probabilistic approaches. In our study, we introduce a novel approach for evaluating diagnostic uncertainty in DR predictions by employing ensemble-based calibration techniques. What sets our approach apart from cutting-edge convolutional neural network models is our use of the EfficientNet architecture, which offers superior accuracy through transfer learning. We then apply a set of post-calibration techniques to transform the model's probabilistic output into a confidence level. To gauge the uncertainty of our forecasts, we compute the entropy of the calibrated confidence value. This approach greatly assists users in determining whether it is necessary to seek a second opinion. Our model achieves an impressive accuracy score of 96 %, and our ensemble technique exhibits a notable reduction in Expected Calibration Error (ECE), in addition to providing a reassuring uncertainty score. 
653 |a Accuracy 
653 |a Calibration 
653 |a Diabetes 
653 |a Diagnostic systems 
653 |a Deep learning 
653 |a Machine learning 
653 |a Confidence intervals 
653 |a Statistical analysis 
653 |a Diabetic retinopathy 
653 |a Uncertainty 
653 |a Artificial neural networks 
653 |a Neural networks 
700 1 |a Sivasankar Elango 
700 1 |a Singh, Kunwar 
773 0 |t ADCAIJ : Advances in Distributed Computing and Artificial Intelligence Journal  |g vol. 14 (2025), p. e32209-e32235 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3282913941/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3282913941/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch