ParkinNet: a Novel Approach to Classifying Alzheimer's and Parkinson's Diseases Using Brain Structural MRI

Guardat en:
Dades bibliogràfiques
Publicat a:ADCAIJ : Advances in Distributed Computing and Artificial Intelligence Journal vol. 14 (2025), p. e32178-e32194
Autor principal: Ali, Md Asraf
Altres autors: Ahammad, Mejbah, Nawshad, Nadim, Sirajum, Munira Shifat, M. Firoz Mridha, Ahmmed, Faysal, Noor A Jannat Tania
Publicat:
Ediciones Universidad de Salamanca
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3282913960
003 UK-CbPIL
022 |a 2255-2863 
024 7 |a 10.14201/adcaij.32178  |2 doi 
035 |a 3282913960 
045 2 |b d20250101  |b d20251231 
100 1 |a Ali, Md Asraf 
245 1 |a ParkinNet: a Novel Approach to Classifying Alzheimer's and Parkinson's Diseases Using Brain Structural MRI 
260 |b Ediciones Universidad de Salamanca  |c 2025 
513 |a Journal Article 
520 3 |a Both Parkinson's disease (PD) and Alzheimer's disease (AD) are forms of neurodegeneration, which are linked to the same biochemical alterations in the brain. The mixed pathology of these diseases may cause diagnostic dilemmas, which may lead to misdiagnosis. Because of this, classification of AD and PD is essential to reduce extra healthcare costs and the patients' stress. However, the classification of AD and PD can be challenging because of the overlapping symptoms and risk factors. Therefore, the purpose of this study is to develop a model named ParkinNet to classify AD and PD. The current study used Global Average Pooling and Adam optimiser with a batch size of 64. For evaluation, seven deep learning algorithms are used, including MobileNetV2, EfficientNetB2, InceptionResNetv2, VGG16, VGG19, InceptionV3 and ResNet50, along with the proposed ParkinNet model. The proposed ParkinNet model outperforms the other existing models examined in this study and yields an accuracy of 98. 54 %. The precise classification of these diseases may contribute to the diagnosis process of AD and PD. 
653 |a Brain 
653 |a Alzheimer's disease 
653 |a Classification 
653 |a Machine learning 
653 |a Parkinson's disease 
700 1 |a Ahammad, Mejbah 
700 1 |a Nawshad, Nadim 
700 1 |a Sirajum, Munira Shifat 
700 1 |a M. Firoz Mridha 
700 1 |a Ahmmed, Faysal 
700 1 |a Noor A Jannat Tania 
773 0 |t ADCAIJ : Advances in Distributed Computing and Artificial Intelligence Journal  |g vol. 14 (2025), p. e32178-e32194 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3282913960/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3282913960/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch