Machine Learning Based Prediction of Retinopathy Diseases Using Segmented Retinal Images

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:ADCAIJ : Advances in Distributed Computing and Artificial Intelligence Journal vol. 14 (2025), p. e31737-e31759
Hoofdauteur: Saroj, Sushil Kumar
Andere auteurs: Kumar, Rakesh, Singh, Nagendra Pratap
Gepubliceerd in:
Ediciones Universidad de Salamanca
Onderwerpen:
Online toegang:Citation/Abstract
Full Text - PDF
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3282913961
003 UK-CbPIL
022 |a 2255-2863 
024 7 |a 10.14201/adcaij.31737  |2 doi 
035 |a 3282913961 
045 2 |b d20250101  |b d20251231 
100 1 |a Saroj, Sushil Kumar 
245 1 |a Machine Learning Based Prediction of Retinopathy Diseases Using Segmented Retinal Images 
260 |b Ediciones Universidad de Salamanca  |c 2025 
513 |a Journal Article 
520 3 |a Diabetes, hypertension, obesity, glaucoma, etc. are severe and common retinopathy diseases today. Early age detection and diagnosis of these diseases can save human beings from many life threats. The retina's blood vessels carry details of retinopathy diseases. Therefore, feature extraction from blood vessels is essential to classify these diseases. A segmented retinal image is only a vascular tree of blood vessels. Feature extraction is easy and efficient from segmented images. Today, there are existing different approaches in this field that use RGB images only to classify these diseases due to which their performance is relatively low. In the work, we have proposed a model based on machine learning that uses segmented retinal images generated by different efficient methods to classify diabetic retinopathy, glaucoma, and multi-class diseases. We have carried out extensive experiments on numerous images of DRIVE, HRF, STARE, and RIM-ONE DL datasets. The highest accuracy of the proposed approach is 90. 90 %, 95. 00 %, and 92. 90 % for diabetic retinopathy, glaucoma, and multi-class diseases, respectively, which the model detected better than most of the methods in this field. 
653 |a Feature extraction 
653 |a Machine learning 
653 |a Diabetes 
653 |a Classification 
653 |a Blood vessels 
653 |a Image segmentation 
653 |a Diabetic retinopathy 
653 |a Color imagery 
653 |a Medical imaging 
653 |a Glaucoma 
653 |a Retinal images 
700 1 |a Kumar, Rakesh 
700 1 |a Singh, Nagendra Pratap 
773 0 |t ADCAIJ : Advances in Distributed Computing and Artificial Intelligence Journal  |g vol. 14 (2025), p. e31737-e31759 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3282913961/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3282913961/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch