A UAV Path-Planning Approach for Urban Environmental Event Monitoring

Guardado en:
Detalles Bibliográficos
Publicado en:Computers, Materials, & Continua vol. 83, no. 3 (2025), p. 5575-5594
Autor principal: Cao, Huiru
Otros Autores: Li, Shaoxin, Li, Xiaomin, Liu, Yongxin
Publicado:
Tech Science Press
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3283265507
003 UK-CbPIL
022 |a 1546-2218 
022 |a 1546-2226 
024 7 |a 10.32604/cmc.2025.061954  |2 doi 
035 |a 3283265507 
045 2 |b d20250101  |b d20251231 
100 1 |a Cao, Huiru  |u College of Information Engineering, Guangzhou Institute of Technology, Guangzhou, 510075, China 
245 1 |a A UAV Path-Planning Approach for Urban Environmental Event Monitoring 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a Efficient flight path design for unmanned aerial vehicles (UAVs) in urban environmental event monitoring remains a critical challenge, particularly in prioritizing high-risk zones within complex urban landscapes. Current UAV path planning methodologies often inadequately account for environmental risk factors and exhibit limitations in balancing global and local optimization efficiency. To address these gaps, this study proposes a hybrid path planning framework integrating an improved Ant Colony Optimization (ACO) algorithm with an Orthogonal Jump Point Search (OJPS) algorithm. Firstly, a two-dimensional grid model is constructed to simulate urban environments, with key monitoring nodes selected based on grid-specific environmental risk values. Subsequently, the improved ACO algorithm is used for global path planning, and the OJPS algorithm is integrated to optimize the local path. The improved ACO algorithm introduces the risk value of environmental events, which is used to direct the UAV to the area with higher risk. In the OJPS algorithm, the path search direction is restricted to the orthogonal direction, which improves the computational efficiency of local path optimization. In order to evaluate the performance of the model, this paper utilizes the metrics of the average risk value of the path, the flight time, and the number of turns. The experimental results demonstrate that the proposed improved ACO algorithm performs well in the average risk value of the paths traveled within the first 5 min, within the first 8 min, and within the first 10 min, with improvements of 48.33%, 26.10%, and 6.746%, respectively, over the Particle Swarm Optimization (PSO) algorithm and 70.33%, 19.08%, and 10.246%, respectively, over the Artificial Rabbits Optimization (ARO) algorithm. The OJPS algorithm demonstrates superior performance in terms of flight time and number of turns, exhibiting a reduction of 40%, 40% and 57.1% in flight time compared to the other three algorithms, and a reduction of 11.1%, 11.1% and 33.8% in the number of turns compared to the other three algorithms. These results highlight the effectiveness of the proposed method in improving the UAV’s ability to respond efficiently to urban environmental events, offering significant implications for the future of UAV path planning in complex urban settings. 
653 |a Particle swarm optimization 
653 |a Urban environments 
653 |a Performance evaluation 
653 |a Flight time 
653 |a Unmanned aerial vehicles 
653 |a Optimization 
653 |a Algorithms 
653 |a Local optimization 
653 |a Monitoring 
653 |a Ant colony optimization 
653 |a Path planning 
700 1 |a Li, Shaoxin  |u College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China 
700 1 |a Li, Xiaomin  |u School of Mechanical and Electrical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China 
700 1 |a Liu, Yongxin  |u School the Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL 32117, USA 
773 0 |t Computers, Materials, & Continua  |g vol. 83, no. 3 (2025), p. 5575-5594 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3283265507/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3283265507/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch