A Depth-guided Annotation Tool for B-line Quantification in Lung Ultrasound

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor principal: Kesibi, Maha
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3283373991
003 UK-CbPIL
020 |a 9798270205607 
035 |a 3283373991 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Kesibi, Maha 
245 1 |a A Depth-guided Annotation Tool for B-line Quantification in Lung Ultrasound 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Pulmonary congestion is a critical and common complication of congestive heart failure, requiring timely and accurate monitoring to guide clinical decision-making. Lung ultrasound (LUS) has emerged as a promising point-of-care tool for assessing pulmonary fluid status due to its portability, safety, and sensitivity. However, current LUS interpretation methods, particularly manual B-line counting, are highly subjec-tive and suffer from substantial inter- and intra-observer variability. This variability limits reproducibility, hampers clinical integration, and challenges the development of robust AI models for LUS analysis.This thesis presents the design, implementation, and evaluation of AnnotateUl-trasound, a novel open-source module for structured LUS annotation within the 3D Slicer platform. The tool introduces a standardized sector-based annotation schema and a visual depth guide to reduce subjectivity in pleural B-line coverage estimation. A human-centered design process, informed by iterative clinical feedback, shaped a user-friendly interface with structured annotation, efficient navigation, and support for multi-rater workflows.Empirical evaluation involved a user study with 18 participants from clinical and non-clinical backgrounds. Results show that the depth guide reduced inter-rater variability (mean MAD: 0.063 → 0.034) and improved overall inter-rater agreement.Intra-rater consistency also improved with the guide (correlation r = 0.85 0.92), supporting the guide's role in enhancing reproducibility. Participants reported high usability (mean SUS score: 83.2) and reduced cognitive workload (NASA-TLX). Qual-itative feedback further highlighted the tool's utility as both a reproducible annotation platform and an effective educational aid.The AnnotateUltrasound module is already in use by clinicians, including re-searchers at Harvard-affiliated institutions, to support large-scale dataset curation, gold-standard adjudication, and AI model development. This tool addresses a critical gap in structured LUS annotation workflows by enabling reproducible, sector-based quantification of B-lines and pleural features. Its AI-ready design lays the groundwork for integrating automated models into diagnostic and annotation pipelines, ultimately supporting reproducible lung ultrasound analysis in heart failure care and beyond. 
653 |a User interface 
653 |a Usability 
653 |a Deep learning 
653 |a User experience 
653 |a User feedback 
653 |a Medical imaging 
653 |a Geometry 
653 |a Ultrasonic imaging 
653 |a Reproducibility 
653 |a Keyboards 
653 |a Artificial intelligence 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3283373991/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3283373991/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch