SRED: Secure and Robust Emotion Detection for Advanced Driver Assistance Systems

Guardat en:
Dades bibliogràfiques
Publicat a:ProQuest Dissertations and Theses (2025)
Autor principal: Rubaiyat, Nadia
Publicat:
ProQuest Dissertations & Theses
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3283373997
003 UK-CbPIL
020 |a 9798270206666 
035 |a 3283373997 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Rubaiyat, Nadia 
245 1 |a SRED: Secure and Robust Emotion Detection for Advanced Driver Assistance Systems 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Facial emotion detection is among the most accessible and non-intrusive techniques for assessing driver states in Advanced Driver Assistance Systems (ADAS). Facial landmarks—such as eyes, nose, and mouth—are central to emotion detection models, providing essential cues for inference. However, deep learning models employed for this task are highly susceptible to adversarial attacks, where imperceptible perturbations can lead to significant performance degradation. Gradient-based adversarial attacks, such as FGSM, BIM, PGD, are highly effective in changing the decision boundaries of the models and causing misclassifications. This thesis investigates the oftenoverlooked vulnerability of facial landmark regions and introduces SRED (Secure and Robust Emotion Detection), a novel framework tailored for real-time deployment in ADAS environments. Three state-of-the-art deep learning models—ResNet18, MobileNetV2, and EfficientNetB0—are trained on widely used datasets (KMU-FED, KDEF, and FER2013), incorporating both standard and attention-guided training paradigms. Robustness is evaluated against adversarial attacks including FGSM, BIM, and PGD, with a focus on resilience under cross-perturbation scenarios. Notably, the transferability analysis reveals that adversarial examples generated using attention-masked models are particularly damaging when applied to similarly trained models—for example, MobileNetV2’s accuracy on the KDEF dataset plummeted from 74.11% to just 7.77% under such conditions. To enhance interpretability, SRED also integrates saliency map analysis, offering insights into the critical facial regions influencing the model’s decisions. 
653 |a Physiology 
653 |a Software 
653 |a Deep learning 
653 |a Back propagation 
653 |a Success 
653 |a Real time 
653 |a Monitoring systems 
653 |a Emotions 
653 |a Machine learning 
653 |a Motivation 
653 |a Fatalities 
653 |a Embedded systems 
653 |a Artificial intelligence 
653 |a Intelligent systems 
653 |a Traffic accidents & safety 
653 |a Autonomous vehicles 
653 |a Neural networks 
653 |a Automobile safety 
653 |a Defense mechanisms 
653 |a Design 
653 |a Automotive engineering 
653 |a Computer science 
653 |a Transportation 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3283373997/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3283373997/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch