Addressing Class Imbalance in Credit Card Fraud Detection: a Study of Artificial Sample Size Injection with GAN

Guardado en:
Detalles Bibliográficos
Publicado en:PQDT - Global (2025)
Autor principal: Silva, Ana Marta Rodrigues Barbosa da
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3283380321
003 UK-CbPIL
020 |a 9798265493590 
035 |a 3283380321 
045 2 |b d20250101  |b d20251231 
084 |a 189128  |2 nlm 
100 1 |a Silva, Ana Marta Rodrigues Barbosa da 
245 1 |a Addressing Class Imbalance in Credit Card Fraud Detection: a Study of Artificial Sample Size Injection with GAN 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Credit card fraud continues to be a significant global challenge, leading to substantial financial losses. While traditional machine learning methods have served as the foundation for fraud detection, recent advancements in deep learning offer promise in capturing intricate fraudulent patterns. However, the persistent challenge of class imbalance in fraud datasets undermines the effectiveness of these models. This paper addresses this challenge by exploring Generative Adversarial Networks (GANs) to generate synthetic data, aiming to mitigate class imbalance. Specifically, the study investigates the optimal sample size of synthetic instances injected into the classifier to improve detection performance. Through experimentation on benchmark credit card transaction datasets, the study aims to identify the most effective combination of real and generated fraud instances for robust detection. The document includes a comprehensive review of existing methodologies, outlines the proposed approach, presents experimental findings, and discusses implications for future research. By doing so, this research contributes to the ongoing efforts to combat credit card fraud effectively. 
653 |a Machine learning 
653 |a Sample size 
653 |a Quality standards 
653 |a Deep learning 
653 |a Inclusion 
653 |a Success 
653 |a Sampling techniques 
653 |a Credit card fraud 
653 |a Fraud prevention 
653 |a Neural networks 
653 |a Design 
653 |a Realism 
653 |a Credit card processing 
653 |a Artificial intelligence 
773 0 |t PQDT - Global  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3283380321/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3283380321/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch