Qwen TextCNN and BERT models for enhanced multilabel news classification in mobile apps

Guardado en:
Detalles Bibliográficos
Publicado en:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 43787-43809
Autor principal: Yuan, Dawei
Otros Autores: Liang, Guojun, Liu, Bin, Liu, Suping
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3283667401
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-27497-6  |2 doi 
035 |a 3283667401 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Yuan, Dawei  |u School of Computer Science, Guangdong University of Science and Technology, 523083, Dongguan, China (ROR: https://ror.org/054fysp39) (GRID: grid.472284.f); Beijing Bitauto Information Technology Co., Ltd, 100102, Beijing, China 
245 1 |a Qwen TextCNN and BERT models for enhanced multilabel news classification in mobile apps 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Mobile news classification systems face significant challenges due to their large scale and complexity. In this paper, we perform a comprehensive comparative study between traditional classification models, such as TextCNN and BERT based models and Large Language Models (LLMs), for the purpose of multi-label news categorization in mobile apps about the Chinese mobile news application. We evaluated the performance of conventional techniques, including a BERT model, along with Qwen models that have been tuned with instruction and fine-tuned using the LoRA technique, to optimize their effectiveness while preserving classification accuracy. Our experimental results show that BERT models perform best for multi-label classification with balanced datasets, while textCNN performs better for binary classification tasks. Our results also reveal that the LSTM and MLP classifiers consistently achieve the highest accuracy with text instruction prompts, while random embeddings achieve competitive accuracy. Furthermore, despite the low macro F1 scores due to class imbalance, consistent relative performance confirms the validity of our analysis. Our research reveals crucial information about the classification of automotive news, highlighting the importance of weighing technical prowess against deployment constraints when choosing model architectures. 
653 |a Machine learning 
653 |a Text categorization 
653 |a Accuracy 
653 |a Classification systems 
653 |a Deep learning 
653 |a Models 
653 |a Recommender systems 
653 |a Comparative studies 
653 |a Neural networks 
653 |a Classification 
653 |a Batch processing 
653 |a Large language models 
653 |a Chinese languages 
653 |a Resource management 
653 |a Efficiency 
653 |a Semantics 
653 |a Economic 
700 1 |a Liang, Guojun  |u School of Information Technology, Halmstad University, 30118, Halmstad, Sweden (ROR: https://ror.org/03h0qfp10) (GRID: grid.73638.39) (ISNI: 0000 0000 9852 2034) 
700 1 |a Liu, Bin  |u School of Computer Science and Technology, Jilin University, 130012, Changchun, China (ROR: https://ror.org/00js3aw79) (GRID: grid.64924.3d) (ISNI: 0000 0004 1760 5735) 
700 1 |a Liu, Suping  |u School of Computer Science, Guangdong University of Science and Technology, 523083, Dongguan, China (ROR: https://ror.org/054fysp39) (GRID: grid.472284.f) 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 43787-43809 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3283667401/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3283667401/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3283667401/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch