Analysis and Development of a 6-DOF Manipulator Combining a Articulated Manipulator with a Cable-Driven Parallel Platform

Gardado en:
Detalles Bibliográficos
Publicado en:Journal of Robotics and Mechatronics vol. 37, no. 6 (Dec 2025), p. 1508
Autor Principal: Sakurai Shunichi
Outros autores: Katsura Seiichiro
Publicado:
Fuji Technology Press Co. Ltd.
Materias:
Acceso en liña:Citation/Abstract
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3284800235
003 UK-CbPIL
022 |a 0915-3942 
022 |a 1883-8049 
024 7 |a 10.20965/jrm.2025.p1508  |2 doi 
035 |a 3284800235 
045 2 |b d20251201  |b d20251231 
100 1 |a Sakurai Shunichi  |u Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan sakurai@katsura.sd.keio.ac.jp 
245 1 |a Analysis and Development of a 6-DOF Manipulator Combining a Articulated Manipulator with a Cable-Driven Parallel Platform 
260 |b Fuji Technology Press Co. Ltd.  |c Dec 2025 
513 |a Journal Article 
520 3 |a In the design of robotic manipulators, achieving dexterity within a large workspace along with structural lightness remains a significant challenge. Conventional industrial robots, including serial and parallel robots, suffer from a trade-off between weight and workspace dexterity. In contrast, cable-driven parallel robots (CDPRs) offer excellent lightweight performance and a large workspace. However, their applicability is limited because their workspaces are constrained by surrounding frames. This paper is related to a 6-DOF manipulator that integrates an articulated manipulator with a CDPR. The end effector is a platform whose orientation is directly controlled by four cables, enabling 6-DOF motion with a lightweight structure. The manufactured prototype and architecture, as well as mechanisms involved in the efficient transmission of cable tensile forces, are detailed. The forward kinematics is analyzed, and the numerical solution using the Newton–Raphson method is reviewed. Simulations are conducted to validate the solution and confirm its feasibility. Furthermore, a position control method that incorporates platform statics is introduced. Experimental results confirm the trajectory tracking performance in both translational and orientational motions. 
653 |a Robots 
653 |a Newton-Raphson method 
653 |a Control methods 
653 |a Workspace 
653 |a End effectors 
653 |a Robot dynamics 
653 |a Degrees of freedom 
653 |a Robot arms 
653 |a Cables 
653 |a Manipulators 
653 |a Industrial robots 
653 |a Kinematics 
700 1 |a Katsura Seiichiro  |u Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan sakurai@katsura.sd.keio.ac.jp 
773 0 |t Journal of Robotics and Mechatronics  |g vol. 37, no. 6 (Dec 2025), p. 1508 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3284800235/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3284800235/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch