Multi-temporal dimension prediction of new energy electricity demand based on chaos-LSSVM neural network

Guardado en:
Detalles Bibliográficos
Publicado en:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 44092-44111
Autor principal: Wu, Yidi
Otros Autores: Wang, Wei, Ma, Xiaotian, Zhao, Rifeng, Wu, Binbin, Chen, Ping, An, Qi
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3284821652
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-27677-4  |2 doi 
035 |a 3284821652 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Wu, Yidi  |u State Grid Hebei Marketing Service Center, 050000, Shijiazhuang, China 
245 1 |a Multi-temporal dimension prediction of new energy electricity demand based on chaos-LSSVM neural network 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a To address the challenges of low prediction accuracy and insufficient capture of temporal dynamic variations in new energy electricity demand, this paper proposes a chaos-optimized least squares support vector machine (LSSVM) neural network model for multi-temporal and spatial forecasting. First, leveraging an edge computing framework, data collected at the metering side are processed, and redundant time records are cleaned. By integrating chaos theory with Takens’ theorem, the refined data sequence undergoes phase space reconstruction, producing a new energy electricity demand dataset with spatial correlation features. In an innovative step, the spatial transformation results are used as input, combining long short-term memory (LSTM) networks and least squares support vector machines to construct a hybrid LSSVM neural network model for electricity demand forecasting. This enables accurate and dynamic multi-temporal and spatial prediction of new energy electricity demand. Experimental results show that the proposed method achieves an MAE of 0.355 kWh and a MAPE of 1.32% for short-term new energy electricity demand forecasting, while for mid-term forecasting, the MAE and MAPE reach 25.36 kWh and 2.15%, respectively. These results verify the robustness and accuracy of the proposed method in dynamic multi-temporal and spatial electricity demand prediction. 
653 |a Accuracy 
653 |a Chaos theory 
653 |a Forecasting 
653 |a Trends 
653 |a Discriminant analysis 
653 |a Decomposition 
653 |a Production planning 
653 |a Long short-term memory 
653 |a Time series 
653 |a Electricity 
653 |a Energy consumption 
653 |a Distributed processing 
653 |a Big Data 
653 |a Energy 
653 |a Edge computing 
653 |a Predictions 
653 |a Neural networks 
653 |a Renewable resources 
653 |a Support vector machines 
653 |a Algorithms 
653 |a Economic 
700 1 |a Wang, Wei  |u State Grid Hebei Marketing Service Center, 050000, Shijiazhuang, China 
700 1 |a Ma, Xiaotian  |u State Grid Hebei Marketing Service Center, 050000, Shijiazhuang, China 
700 1 |a Zhao, Rifeng  |u State Grid Hebei Marketing Service Center, 050000, Shijiazhuang, China 
700 1 |a Wu, Binbin  |u State Grid Hebei Marketing Service Center, 050000, Shijiazhuang, China 
700 1 |a Chen, Ping  |u State Grid Hebei Marketing Service Center, 050000, Shijiazhuang, China 
700 1 |a An, Qi  |u State Grid Hebei Marketing Service Center, 050000, Shijiazhuang, China 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 44092-44111 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3284821652/abstract/embedded/Y2VX53961LHR7RE6?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3284821652/fulltext/embedded/Y2VX53961LHR7RE6?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3284821652/fulltextPDF/embedded/Y2VX53961LHR7RE6?source=fedsrch