Comparative experimental and statistical study of conventional and bobbin tool friction stir welding of AA6061-T6 aluminum alloy

Guardado en:
Bibliografiske detaljer
Udgivet i:Journal of Engineering and Applied Science vol. 72, no. 1 (Dec 2025), p. 255
Hovedforfatter: Yacout, George G.
Andre forfattere: Shash, A. Y., Hegazi, Hesham A., El-Sherbiny, Mahmoud G.
Udgivet:
Springer Nature B.V.
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3284826523
003 UK-CbPIL
022 |a 1110-1903 
022 |a 1110-1393 
024 7 |a 10.1186/s44147-025-00834-2  |2 doi 
035 |a 3284826523 
045 2 |b d20251201  |b d20251231 
100 1 |a Yacout, George G.  |u German University in Cairo, Engineering Design and Production Department, Faculty of Engineering and Materials Science, Cairo, Egypt (GRID:grid.187323.c) (ISNI:0000 0004 0625 8088) 
245 1 |a Comparative experimental and statistical study of conventional and bobbin tool friction stir welding of AA6061-T6 aluminum alloy 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a This study provides a comprehensive comparative analysis of Conventional Friction Stir Welding (CFSW) and Bobbin Tool Friction Stir Welding (BTFSW) for AA6061-T6 aluminum alloy plates. A factorial experimental design was employed to systematically investigate the effects of rotational speed, feed rate, tilt angle or pinching gap, plunge depth, and tool pin profile on joint performance. Regression models for ultimate tensile strength (UTS) and Vickers micro-hardness (HV) were developed and validated through analysis of variance (ANOVA), with all models exhibiting excellent fit (R2 > 0.99) and strong predictive capability. The results demonstrate that both CFSW and BTFSW can achieve high-quality, defect-free welds, with CFSW yielding a maximum UTS of 241.52 MPa and BTFSW achieving comparable strength and superior hardness (up to 101.26 HV with a threaded pin). ANOVA revealed rotational speed and tool profile as the most significant factors for UTS, while feed rate and pin geometry predominantly governed hardness. Response surface analysis identified pronounced interaction and quadratic effects, highlighting the importance of simultaneous optimization of multiple process parameters. BTFSW outperformed CFSW in terms of process flexibility, hardness, and defect mitigation, attributed to its symmetrical heat input and elimination of the backing plate. The study delivers validated predictive equations and detailed process maps to guide industrial practitioners in optimizing Friction Stir Welding (FSW) parameters for AA6061-T6, ultimately enabling the tailored achievement of superior mechanical properties and weld integrity.Highlights• This study systematically compares the mechanical performance and process response of Conventional FSW and Bobbin Tool FSW configurations for AA6061-T6 aluminum alloy, using identical experimental protocols and advanced statistical modeling.• Regression models validated by ANOVA and diagnostic plots (R² > 0.99) accurately predict ultimate tensile strength and hardness based on key process variables, providing a reliable framework for process optimization.• Results reveal that BTFSW offers superior hardness, process flexibility, and defect mitigation over CFSW, while both methods achieve comparable peak tensile strengths when optimally configured.• Optimized process maps and validated models are provided as practical tools for industry practitioners to achieve tailored mechanical properties and high-quality welds in AA6061-T6, supporting flexible implementation in advanced manufacturing. 
653 |a Process variables 
653 |a Design of experiments 
653 |a Spools 
653 |a Friction stir welding 
653 |a Regression models 
653 |a Optimization 
653 |a Mechanical properties 
653 |a Response surface methodology 
653 |a Surface analysis (chemical) 
653 |a Variance analysis 
653 |a Statistical analysis 
653 |a Pareto optimum 
653 |a Defects 
653 |a Shear tests 
653 |a Tensile strength 
653 |a Metal plates 
653 |a Welding parameters 
653 |a Ultimate tensile strength 
653 |a Metal fatigue 
653 |a Aluminum alloys 
653 |a Welded joints 
653 |a Process mapping 
653 |a Flexibility 
653 |a Feed rate 
653 |a Alloys 
653 |a Statistical models 
653 |a Aluminum base alloys 
653 |a Process parameters 
700 1 |a Shash, A. Y.  |u German University in Cairo, Engineering Design and Production Department, Faculty of Engineering and Materials Science, Cairo, Egypt (GRID:grid.187323.c) (ISNI:0000 0004 0625 8088); Cairo University, Mechanical Design and Production Engineering Department, Faculty of Engineering, Giza, Egypt (GRID:grid.7776.1) (ISNI:0000 0004 0639 9286) 
700 1 |a Hegazi, Hesham A.  |u German University in Cairo, Engineering Design and Production Department, Faculty of Engineering and Materials Science, Cairo, Egypt (GRID:grid.187323.c) (ISNI:0000 0004 0625 8088); Cairo University, Mechanical Design and Production Engineering Department, Faculty of Engineering, Giza, Egypt (GRID:grid.7776.1) (ISNI:0000 0004 0639 9286) 
700 1 |a El-Sherbiny, Mahmoud G.  |u Cairo University, Mechanical Design and Production Engineering Department, Faculty of Engineering, Giza, Egypt (GRID:grid.7776.1) (ISNI:0000 0004 0639 9286) 
773 0 |t Journal of Engineering and Applied Science  |g vol. 72, no. 1 (Dec 2025), p. 255 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3284826523/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3284826523/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3284826523/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch