Analysis of the micro Urban Heat Island effect

Shranjeno v:
Bibliografske podrobnosti
izdano v:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences vol. X-5/W2-2025 (2025), p. 179-189
Glavni avtor: Fatehpur, Sunil S.
Drugi avtorji: Singh, Tarun Pratap
Izdano:
Copernicus GmbH
Teme:
Online dostop:Citation/Abstract
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3284830736
003 UK-CbPIL
022 |a 2194-9042 
022 |a 2194-9050 
024 7 |a 10.5194/isprs-annals-X-5-W2-2025-179-2025  |2 doi 
035 |a 3284830736 
045 2 |b d20250101  |b d20251231 
084 |a 263032  |2 nlm 
100 1 |a Fatehpur, Sunil S.  |u Symbiosis International University (SIU), India 
245 1 |a Analysis of the micro Urban Heat Island effect 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a Urban areas worldwide are experiencing increase in temperatures due to urbanisation and, leading to the effect of Urban Heat Islands (UHIs), which threaten urban sustainability. Global research aims to identify UHIs and develop mitigation measures. Most existing studies rely on coarse-resolution satellite imagery, limiting the detection and characterization of heterogeneous urban surfaces and localized UHI effects. Advances in drone technology with multi-payload thermal sensors now allows LST mapping at finer spatial resolutions (<1 m), enabling detailed analysis of temperature variations across urban surfaces. Assessing the accuracy of these measurements is essential and typically involves comparing UAV-derived LST with ground-based or in situ temperature observations collected simultaneously during UAV flights. Proper calibration of the TIR sensors is necessary to minimize systematic errors. Accuracy is commonly quantified using statistical quantification like Mean Absolute Error (MAE), R squared and Root Mean Square Error (RMSE). UAVs offer much finer spatial resolution (<1 m) than satellites, enabling detection of localized UHI hotspots that coarse-resolution imagery may miss. Combining UAV, ground, and satellite data enhances confidence in LST estimates and supports precise analysis of urban heat patterns, providing critical insights for mitigation strategies and urban planning. These high-resolution datasets can support machine-learning tools for urban planners to predict localized UHI impacts, adopt mitigation strategies, and advance Sustainable Development Goals. 
653 |a Systematic errors 
653 |a Urbanization 
653 |a Urban planning 
653 |a Sensors 
653 |a Spatial resolution 
653 |a Root-mean-square errors 
653 |a Satellite imagery 
653 |a Urban heat islands 
653 |a Heat 
653 |a Sustainable development 
653 |a Machine learning 
653 |a Satellites 
653 |a Urban areas 
653 |a Environmental 
700 1 |a Singh, Tarun Pratap  |u Symbiosis Institute of Geo-informatics (SIG), India 
773 0 |t ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences  |g vol. X-5/W2-2025 (2025), p. 179-189 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3284830736/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3284830736/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch