Distributed sensor fusion estimation algorithms based on Kalman Filtering

Guardat en:
Dades bibliogràfiques
Publicat a:ITM Web of Conferences vol. 80 (2025)
Autor principal: Ni, Si
Publicat:
EDP Sciences
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3284871304
003 UK-CbPIL
022 |a 2431-7578 
022 |a 2271-2097 
024 7 |a 10.1051/itmconf/20258001001  |2 doi 
035 |a 3284871304 
045 2 |b d20250101  |b d20251231 
084 |a 268430  |2 nlm 
100 1 |a Ni, Si 
245 1 |a Distributed sensor fusion estimation algorithms based on Kalman Filtering 
260 |b EDP Sciences  |c 2025 
513 |a Conference Proceedings 
520 3 |a Efficient distributed sensor fusion is critical for reliable state estimation in applications such as autonomous vehicles, robotics, and environmental monitoring. This review examines four main distributed Kalman filtering approaches: matrix-weighted fusion, covariance intersection, feedback based optimal fusion, and machine learning–augmented schemes. Core equations for each method are outlined. Communication requirements, computational complexity, and estimation accuracy are systematically compared across diverse network conditions, including synchronous, asynchronous, and lossy environments with packet loss. Practical challenges addressed encompass scalability in large-scale, high-dimensional systems, numerical stability under limited computational precision, and inherent trade- offs between estimation performance and resource consumption. Case studies and extensive simulations demonstrate the real-world efficacy of each method. Finally, key future research directions are highlighted, focusing on edge- optimized architectures, robust algorithms tolerant to significant delays and asynchronous updates, and the integration of essential security and privacy features. This synthesis provides a roadmap for advancing distributed Kalman filters within resource-constrained sensor networks. 
653 |a Robotics 
653 |a State estimation 
653 |a Algorithms 
653 |a Numerical stability 
653 |a Machine learning 
653 |a Environmental monitoring 
653 |a Multisensor fusion 
653 |a Sensors 
653 |a Kalman filters 
653 |a Distributed sensor systems 
773 0 |t ITM Web of Conferences  |g vol. 80 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3284871304/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3284871304/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch