A new solution for FGM thin rectangular plate bending with variable thickness

Guardado en:
Detalles Bibliográficos
Publicado en:Discover Mechanical Engineering vol. 4, no. 1 (Dec 2025), p. 76
Autor principal: Ghorbanhosseini, S.
Otros Autores: Jokar, M. H., Najafizadeh, M. M.
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3285444527
003 UK-CbPIL
022 |a 2731-6564 
024 7 |a 10.1007/s44245-025-00165-9  |2 doi 
035 |a 3285444527 
045 2 |b d20251201  |b d20251231 
100 1 |a Ghorbanhosseini, S.  |u Bu-Ali Sina University, Department of Mechanical Engineering, Faculty of Engineering, Hamedan, Iran (GRID:grid.411807.b) (ISNI:0000 0000 9828 9578) 
245 1 |a A new solution for FGM thin rectangular plate bending with variable thickness 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a This study presents a novel analytical solution for the bending analysis of functionally graded material (FGM) thin rectangular plates with variable thickness. The Levy-type method is extended based on the classical thin-plate theory in order to provide a new exact and practical solution for solving this problem. It is assumed that the material properties varied through the thickness direction in a power-law distribution. Types of loading, thickness variation, plate’s boundary condition, and plate’s material combination were chosen as the state variables which affected on the non-dimensional plate’s deflection. By governing equations, some partial differential equations were appeared which were solved analytically by using generalized Fourier series. Finally, the non-dimensional thin rectangular FGM plate’s deflection under various loading types were calculated. The results demonstrate that the proposed method provides an accurate and computationally efficient tool for analyzing FGM plates with non-uniform thickness, offering significant advantages over conventional numerical approaches in terms of computational cost and solution precision. By increasing the power law index (), non-dimensional deflection values increased through all of the other variables such as plate’s boundary conditions. 
653 |a Load 
653 |a Kinematics 
653 |a Partial differential equations 
653 |a Material properties 
653 |a Bending 
653 |a Power law 
653 |a Rectangular plates 
653 |a Fourier series 
653 |a Functionally gradient materials 
653 |a Computational efficiency 
653 |a Boundary conditions 
653 |a Exact solutions 
653 |a Plate theory 
653 |a Thin plates 
653 |a Variable thickness 
653 |a Deformation 
653 |a Viscoelasticity 
653 |a Deflection 
700 1 |a Jokar, M. H.  |u Islamic Azad University, Department of Mechanical Engineering, Arak Branch, Arak, Iran (GRID:grid.411465.3) (ISNI:0000 0004 0367 0851) 
700 1 |a Najafizadeh, M. M.  |u Islamic Azad University, Department of Mechanical Engineering, Arak Branch, Arak, Iran (GRID:grid.411465.3) (ISNI:0000 0004 0367 0851) 
773 0 |t Discover Mechanical Engineering  |g vol. 4, no. 1 (Dec 2025), p. 76 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3285444527/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3285444527/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3285444527/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch