Contact-Implicit Modeling and Simulation of a Snake Robot on Compliant and Granular Terrain

Sparad:
Bibliografiska uppgifter
I publikationen:ProQuest Dissertations and Theses (2026)
Huvudupphov: Hublikar, Haroon
Utgiven:
ProQuest Dissertations & Theses
Ämnen:
Länkar:Citation/Abstract
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3285836760
003 UK-CbPIL
020 |a 9798270246204 
035 |a 3285836760 
045 2 |b d20260101  |b d20261231 
084 |a 66569  |2 nlm 
100 1 |a Hublikar, Haroon 
245 1 |a Contact-Implicit Modeling and Simulation of a Snake Robot on Compliant and Granular Terrain 
260 |b ProQuest Dissertations & Theses  |c 2026 
513 |a Dissertation/Thesis 
520 3 |a This thesis presents a unified modeling and simulation framework for analyzing sidewinding and tumbling locomotion of the COBRA snake robot across rigid, compliant, and granular terrains. A contact-implicit formulation is used to model distributed frictional interactions during sidewinding, and validated through MATLAB Simscape simulations and physical experiments on rigid ground and loose sand. To capture terrain deformation effects, Project Chrono’s Soil Contact Model (SCM) is integrated with the articulated multibody dynamics, enabling prediction of slip, sinkage, and load redistribution that reduce stride efficiency on deformable substrates. For high-energy rolling locomotion on steep slopes, the Chrono DEM Engine is used to simulate particle-resolved granular interactions, revealing soil failure, intermittent lift-off, and energy dissipation mechanisms not captured by rigid models. Together, these methods span real-time control-oriented simulation and high-fidelity granular physics. Results demonstrate that rigid-ground models provide accurate short-horizon motion prediction, while continuum and particle-based terrain modeling becomes necessary for reliable mobility analysis in soft and highly dynamic environments. This work establishes a hierarchical simulation pipeline that advances robust, terrain-aware locomotion for robots operating in challenging unstructured settings. 
653 |a Robotics 
653 |a Computer engineering 
653 |a Electrical engineering 
773 0 |t ProQuest Dissertations and Theses  |g (2026) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3285836760/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3285836760/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch