Clock Drawing as a Tool to Reduce Cognitive Assessment Time

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:Alzheimer's & Dementia vol. 21 (Dec 1, 2025)
מחבר ראשי: Pavoni, Carolyn
מחברים אחרים: Chowdhury, Nodee, Binns, Malcolm, Black, Sandra E., Kumar, Sanjeev, Tang‐Wai, David F., Tartaglia, Carmela, Freedman, Morris
יצא לאור:
John Wiley & Sons, Inc.
נושאים:
גישה מקוונת:Citation/Abstract
Full Text
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3285985488
003 UK-CbPIL
022 |a 1552-5260 
022 |a 1552-5279 
024 7 |a 10.1002/alz70861_108482  |2 doi 
035 |a 3285985488 
045 0 |b d20251201 
100 1 |a Pavoni, Carolyn  |u Baycrest Health Sciences, Toronto, ON, Canada 
245 1 |a Clock Drawing as a Tool to Reduce Cognitive Assessment Time 
260 |b John Wiley & Sons, Inc.  |c Dec 1, 2025 
513 |a Journal Article 
520 3 |a Background The Clock Drawing Test (CDT) is a widely used neuropsychological tool and a component of the Toronto Cognitive Assessment (TorCA). We aimed to determine whether specific CDT sub‐scores predict performance on other TorCA sub‐tests. Identifying such relationships may support removal of measures, thereby reducing overall TorCA administration time. Method Data were obtained from the Toronto Dementia Research Alliance database which includes patient demographic and clinical information assessed at four Toronto area memory clinics. Performance on the CDT is based upon 4 sub‐scores: contour, numbers, hands, and centre. The TorCA contains 24 sub‐tests in addition to the CDT that evaluate cognitive domains including memory, visuospatial, working memory/attention/executive control, and language. To identify a linear combination of CDT sub‐scores that is maximally associated with a linear combination of the other TorCA sub‐tests, we used singular value decomposition of their cross‐block correlation matrix as applied by Partial Least Squares. Reported saliences describe relative contributions of each variable to the linear combinations. Saliences greater than 2 standard errors (se) are considered significant. Result CDT and TorCA sub‐test saliences using data from 1,872 participants are presented in Figure 1. The “hand” sub‐score returned relatively large salience (0.71, se = 0.31). The “numbers” sub‐score had slightly lower salience (0.50, se = 0.22); the “centre” sub‐score returned a similar salience (0.43, se = 0.19). TorCA sub‐tests of working memory/attention/executive control, semantic knowledge, and visuospatial function returned larger saliences (Figure 1). Specifically, the strongest association was with Trails B (0.33, se = 0.15), followed by Trails A (0.27, se = 0.13), semantic fluency (0.25, se = 0.11), Benson Figure copy (0.25, se = 0.12) and recall (0.25, se = 0.11). Conclusion Within the CDT scoring system, clock hands and numbers were the strongest predictors of performance on the TorCA sub‐tests. The most robust associations were with domains of working memory/attention/executive function, semantic knowledge, and visuospatial function. We plan to apply artificial intelligence to classify clocks based on these cognitive functions. We will then examine how these classified clocks relate to TorCA sub‐tests to determine whether redundant tests could be removed, thereby shortening administration time. 
653 |a Cognitive functioning 
653 |a Salience 
653 |a Semantic memory 
653 |a Databases 
653 |a Errors 
653 |a Fluency 
653 |a Time 
653 |a Function 
653 |a Memory 
653 |a Dementia 
653 |a Clocks & watches 
653 |a Executive control 
653 |a Cognition 
653 |a Neuropsychology 
653 |a Recall 
653 |a Hands 
653 |a Numbers 
653 |a Artificial intelligence 
653 |a Semantics 
653 |a Executive function 
653 |a Short term memory 
653 |a Attention 
653 |a Clinics 
653 |a Clock drawing test 
653 |a Scores 
653 |a Management 
653 |a Visual memory 
653 |a Visual-Spatial ability 
653 |a Spatial memory 
653 |a Clinical information 
700 1 |a Chowdhury, Nodee  |u Baycrest Health Sciences, Toronto, ON, Canada 
700 1 |a Binns, Malcolm  |u Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada 
700 1 |a Black, Sandra E.  |u University of Toronto, Toronto, ON, Canada 
700 1 |a Kumar, Sanjeev  |u University of Toronto, Toronto, ON, Canada 
700 1 |a Tang‐Wai, David F.  |u Toronto Dementia Research Alliance, Toronto, ON, Canada 
700 1 |a Tartaglia, Carmela  |u Memory Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada 
700 1 |a Freedman, Morris  |u Baycrest Health Sciences, Toronto, ON, Canada 
773 0 |t Alzheimer's & Dementia  |g vol. 21 (Dec 1, 2025) 
786 0 |d ProQuest  |t Consumer Health Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3285985488/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3285985488/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3285985488/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch