External Validation of Dementia Risk Prediction Models: Towards evidence‐based implementation

Guardat en:
Dades bibliogràfiques
Publicat a:Alzheimer's & Dementia vol. 21 (Dec 1, 2025)
Autor principal: Stephan, Blossom CM
Altres autors: Brain, Jacob, Buchanan, Tanya, Burley, Claire V, Burton, Elissa, Dunne, Jennifer, Myers, Bronwyn, Sabatini, Serena, Stephan, William, Tang, Eugene Yee Hing, Anstey, Kaarin J., Siervo, Mario
Publicat:
John Wiley & Sons, Inc.
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3285990660
003 UK-CbPIL
022 |a 1552-5260 
022 |a 1552-5279 
024 7 |a 10.1002/alz70860_101969  |2 doi 
035 |a 3285990660 
045 0 |b d20251201 
100 1 |a Stephan, Blossom CM  |u Curtin University, Perth, Western Australia, Australia, 
245 1 |a External Validation of Dementia Risk Prediction Models: Towards evidence‐based implementation 
260 |b John Wiley & Sons, Inc.  |c Dec 1, 2025 
513 |a Journal Article 
520 3 |a Background Increasing dementia case numbers globally necessitates accurate and valid prediction tools for early intervention and prevention. Although over 100 different dementia prediction models exist none are endorsed for clinical use. With so many distinct models, it is difficult to make recommendations on which model should be selected for use. External validation – the assessment of model performance in populations distinct from the sample they were developed in – is critical for establishing utility and generalisability. Therefore, we undertook an umbrella review and meta‐analysis to evaluate the predictive performance of externally validated dementia prediction models. Method We synthesised results from our three published systematic reviews on dementia risk prediction model development and testing, covering all literature from inception to mid‐2023. We also undertook an updated literature search (November 2024). Included studies were population‐based cohorts that evaluated predictive accuracy (e.g., c‐statistic) for an externally validated dementia prediction model. Meta‐analysis was conducted for models externally validated in ≥10 independent studies. Result Out of 39 external validation studies, three models have been independently validated in ≥10 studies including the Brief Dementia Screening Indicator (BDSI), the Cardiovascular Risk Factors, Ageing and Dementia risk score (CAIDE) and the Genetic Risk Score‐19 (GRS‐19). Model validation has been exclusively undertaken in high and middle‐income countries. The meta‐analysis results show that the BDSI (pooled c‐statistic=0.72; 95%CI: 0.69‐0.75; I2=0.87; n = 13 external validations) and GRS‐19 (pooled c‐statistic=0.76; 95%CI: 0.74‐0.79; I2=0.81; n = 10 external validations), had reasonable predictive accuracy for dementia. In contrast, the CAIDE score showed poor accuracy (pooled c‐statistic=0.60; 95%CI: 0.55‐0.65; I2=0.95; n = 12 external validations). Limited transportability and heterogeneity in the results is likely due to methodological differences across studies, for example in sample age distribution and duration of follow‐up. Conclusion With further real‐world testing, dementia risk prediction models that demonstrate reasonable external validity could be implemented in clinical settings to support early risk identification and preventative planning. Moving forward, research should evaluate the clinical impact and cost‐effectiveness of dementia risk screening, particularly in diverse populations and low/middle‐income countries, to optimize early detection and prevention efforts. 
653 |a Meta-analysis 
653 |a Prediction models 
653 |a Age distribution 
653 |a Accuracy 
653 |a Prevention programs 
653 |a Risk factors 
653 |a Dementia 
653 |a Clinical research 
653 |a Statistics 
653 |a Early intervention 
653 |a Genetics 
653 |a Risk 
653 |a Prevention 
653 |a Literature 
653 |a Independent study 
653 |a Cost analysis 
653 |a Systematic review 
653 |a Validation studies 
653 |a Validity 
653 |a Genetic susceptibility 
653 |a Medical screening 
653 |a Cardiovascular diseases 
653 |a Low income groups 
700 1 |a Brain, Jacob  |u The University of Adelaide, Adelaide, SA, Australia, 
700 1 |a Buchanan, Tanya  |u Dementia Australia, North Ryde, NSW, Australia, 
700 1 |a Burley, Claire V  |u Curtin University, Perth, Western Australia, Australia, 
700 1 |a Burton, Elissa  |u Curtin University, Perth, Western Australia, Australia, 
700 1 |a Dunne, Jennifer  |u Curtin University, Perth, Western Australia, Australia, 
700 1 |a Myers, Bronwyn  |u Curtin University, Perth, Western Australia, Australia, 
700 1 |a Sabatini, Serena  |u University of Surrey, Guildford, Surrey, United Kingdom, 
700 1 |a Stephan, William  |u Curtin University, Perth, Western Australia, Australia, 
700 1 |a Tang, Eugene Yee Hing  |u Newcastle University, Newcastle, Newcastle upon Tyne, United Kingdom, 
700 1 |a Anstey, Kaarin J.  |u University of New South Wales, Sydney, NSW, Australia, 
700 1 |a Siervo, Mario  |u Curtin University, Perth, Western Australia, Australia, 
773 0 |t Alzheimer's & Dementia  |g vol. 21 (Dec 1, 2025) 
786 0 |d ProQuest  |t Consumer Health Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3285990660/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3285990660/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch