Neuronal hyperexcitability and impaired spatial coding in Alzheimer's disease mouse models

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Alzheimer's & Dementia vol. 21 (Dec 1, 2025)
Egile nagusia: Hussaini, Abid
Beste egile batzuk: Rodriguez, Gustavo A, Raghuraman, Radha, Aoun, Andrew, Shetler, Oliver
Argitaratua:
John Wiley & Sons, Inc.
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3285997772
003 UK-CbPIL
022 |a 1552-5260 
022 |a 1552-5279 
024 7 |a 10.1002/alz70855_097237  |2 doi 
035 |a 3285997772 
045 0 |b d20251201 
100 1 |a Hussaini, Abid  |u Burke Neurological Institute at Weill Cornell Medicine, White Plains, NY, USA, 
245 1 |a Neuronal hyperexcitability and impaired spatial coding in Alzheimer's disease mouse models 
260 |b John Wiley & Sons, Inc.  |c Dec 1, 2025 
513 |a Journal Article 
520 3 |a Background Alzheimer's disease (AD) represents a progressive neurodegenerative disorder characterized by complex pathophysiological mechanisms that fundamentally alter neural circuit dynamics and cognitive processing. The accumulation of amyloid‐beta (Aβ) peptides and associated neuroinflammatory processes progressively compromise key neural networks, particularly within critical memory‐associated cortical regions such as the medial entorhinal cortex (MEC) and lateral entorhinal cortex (LEC). These neuroanatomical structures serve pivotal roles in spatial navigation, memory encoding, and contextual information processing, rendering them vulnerable to early pathological changes in neurodegeneration. Method To elucidate the intricate neurophysiological alterations accompanying AD pathogenesis, we employed in vivo electrophysiological approaches utilizing two distinct transgenic mouse models: App NL‐G‐F knock‐in (APP KI) and EC‐App/Tau mice. We incorporated single‐unit electrophysiology recordings, enabling high‐resolution tracking of neuronal ensemble activities within open field experimental paradigms. Methodological approaches included spatial information scoring, computational analyses employing Earth Mover's Distance (EMD) metrics, and spatial decoding techniques to interrogate subtle neuronal firing characteristics. Result Neurophysiological analyses revealed profound alterations in neuronal ensemble behaviors across both cortical structures. In the medial entorhinal cortex, APP KI mice demonstrated significant reductions in spatial information encoding capabilities, manifesting as markedly decreased spatial information scores compared to age‐matched control populations. Notably, characteristic neuronal subtypes such as border cells and grid cells exhibited pronounced instabilities in firing preferences and spatial periodicity, suggesting fundamental disruptions in spatial representation mechanisms. Complementary investigations of the lateral entorhinal cortex unveiled hyperactive neuronal populations characterized by diminished information content, increased neuronal sparsity, and compromised firing precision for object and trace cell populations. Conclusion We provide empirical evidence demonstrating that AD‐associated pathological processes induce neurophysiological disruptions within entorhinal cortical networks. The observed alterations in neuronal ensemble dynamics, characterized by compromised spatial and contextual encoding capabilities, offer critical insights into the mechanistic underpinnings of cognitive decline. These neurophysiological investigations illuminate the intricate relationship between molecular pathogenesis and circuit‐level dysfunction, suggesting potential mechanistic pathways through which Aβ accumulation progressively impairs neural information processing. The research underscores the importance of understanding nuanced neuronal network transformations as fundamental contributors to cognitive deterioration in AD, potentially facilitating future therapeutic interventions targeting early pathological mechanisms. 
653 |a Information processing 
653 |a Alzheimer's disease 
653 |a Accumulation 
653 |a Cortex 
653 |a Encoding (Cognitive process) 
653 |a Memory 
653 |a Hyperactivity 
653 |a Animals 
653 |a Neural networks 
653 |a Information content 
653 |a Navigation 
653 |a Cognition 
653 |a Entorhinal cortex 
653 |a Spatial analysis 
653 |a Deterioration 
653 |a Networks 
653 |a Cognitive impairment 
653 |a Encoding 
653 |a Space 
653 |a Dismissal 
653 |a Electrophysiology 
653 |a Disease 
653 |a Subtypes 
653 |a Scores 
653 |a Decoding 
653 |a Tracking 
653 |a Pathogenesis 
653 |a Early intervention 
653 |a Contextual information 
700 1 |a Rodriguez, Gustavo A  |u Columbia University Irving Medical Center, New York, NY, USA, 
700 1 |a Raghuraman, Radha  |u Columbia University Irving Medical Center, New York, NY, USA, 
700 1 |a Aoun, Andrew  |u Burke Neurological Institute at Weill Cornell Medicine, White Plains, NY, USA, 
700 1 |a Shetler, Oliver  |u Columbia University Irving Medical Center, New York, NY, USA, 
773 0 |t Alzheimer's & Dementia  |g vol. 21 (Dec 1, 2025) 
786 0 |d ProQuest  |t Consumer Health Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3285997772/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3285997772/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch