LeoFold: A 12‐Dimensional Conformational Rescue Platform for Late‐Stage Memory Recovery in Alzheimer's Disease – From Simulation to Clinical Signal

Guardado en:
Detalles Bibliográficos
Publicado en:Alzheimer's & Dementia vol. 21 (Dec 1, 2025)
Autor principal: Griffin, Richard L
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286013619
003 UK-CbPIL
022 |a 1552-5260 
022 |a 1552-5279 
024 7 |a 10.1002/alz70861_108689  |2 doi 
035 |a 3286013619 
045 0 |b d20251201 
100 1 |a Griffin, Richard L  |u LevelX, San Ramon, CA, USA 
245 1 |a LeoFold: A 12‐Dimensional Conformational Rescue Platform for Late‐Stage Memory Recovery in Alzheimer's Disease – From Simulation to Clinical Signal 
260 |b John Wiley & Sons, Inc.  |c Dec 1, 2025 
513 |a Journal Article 
520 3 |a Background In this presentation, we unveil the first clinical application of LeoFold, a high‐dimensional recursive attractor folding engine, capable of simulating and stabilizing the most damaged protein conformations observed in late‐stage AD patients. Method Our research proposes a disruptive hypothesis: that protein misfolding is not only a symptom of AD, but also a reversible driver of cognitive collapse. This talk will provide scientific depth and public‐facing impact, framing AD not as a purely degenerative condition, but as a foldable, recoverable system with clinical and societal implications. Result Think of a crumpled piece of paper—not just the shape it is now, but how it got that way. What stress folded it? What sequence of force unfolded it? LeoFold allows us to model folding not just in space, but in time. This is dynamic folding in four dimensions, shaped by disease. LeoFold is a deterministic protein folding engine built upon a 12‐dimensional attractor field, simulating qubit‐stabilized protein folding paths in neurodegenerative systems. It is not a predictive tool alone, but a therapeutic design engine, identifying RMSD minima and entropy echo signatures required to force refolding in structurally damaged protein states. Conclusion Dynamic vs Static AI: Unlike static models, LeoFold operates dynamically—tracking folding as a kinetic cascade, shaped by drugs like Fasudil, not only in structure but in folding history. This is not shape prediction; this is shape evolution prediction. Media‐Relevant Insight: • Alzheimer’s is no longer "irreversible." • We have shown simulated reversal of memory‐linked protein collapse. • LeoFold produces target‐specific, genotype‐aware drug optimization with path‐to‐clinic potential. • In the age of generative AI, this is generative biology – creating therapeutic structure from cognitive collapse. Conclusion This platform has broken the biological sound barrier of AD – not merely slowing decline, but reversing it at the structural level. LeoFold allows researchers to enter the folding landscape of Alzheimer’s proteins and return with recovery maps. • Scientific Quality: Recursive qubit attractor modeling validated by thermodynamic convergence. • Relevance: Targets AD where it was thought unchangeable – late stage. • Novelty: First use of 12D echo‐stabilized RMSD tracking for therapeutic optimization. • Impact: May redefine AD as a recoverable synaptic topology disorder, not a terminal neurodegeneration. 
653 |a Protein folding 
653 |a Alzheimer's disease 
653 |a Drugs 
653 |a Recursion 
653 |a Recovery 
653 |a Biology 
653 |a Models 
653 |a Memory 
653 |a Simulation 
653 |a Cognition 
653 |a Convergence 
653 |a Reversible 
653 |a Artificial intelligence 
653 |a Standardized patients 
653 |a Predictions 
653 |a Proteins 
653 |a Disease 
653 |a Optimization 
653 |a Therapy 
653 |a Patients 
653 |a Tracking 
653 |a Entropy 
773 0 |t Alzheimer's & Dementia  |g vol. 21 (Dec 1, 2025) 
786 0 |d ProQuest  |t Consumer Health Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286013619/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3286013619/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286013619/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch