Transcriptional rewiring in cancer driven by POLR2A/RPB1: mechanistic insights, non-coding RNA crosstalk, and therapeutic opportunities

Guardado en:
Detalles Bibliográficos
Publicado en:Frontiers in Pharmacology vol. 16 (Dec 2025), p. 1745087-1745098
Autor principal: Szczepaniak, Adrian
Otros Autores: Jaskuła, Kinga, Zielińska, Marta, Godlewski, Jakub
Publicado:
Frontiers Media SA
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:RNA polymerase II, together with its catalytic subunit RPB1 (encoded by POLR2A ), forms the core of the eukaryotic transcriptional machinery that drives the synthesis of protein-coding and regulatory RNA transcripts. Accumulating evidence indicates that dysregulation of POLR2A /RPB1 is a critical driver of oncogenesis, promoting uncontrolled proliferation, evasion of apoptosis, and extensive transcriptional reprogramming across multiple malignancies, frequently affected by recurrent 17p deletions co-occurring with major tumor suppressor loss events. Such coordinated genomic alterations create transcriptional dependency that may be exploited therapeutically. Beyond its canonical role in transcription, POLR2A /RPB1 operates within an extensive regulatory network involving non-coding RNAs. Notably, circular RNAs derived from the POLR2A transcript have emerged as stable post-transcriptional regulators that modulate tumorigenic signaling pathways. In these roles, circular POLR2A isoforms promote proliferation, migration, and therapy resistance in glioblastoma and clear-cell renal cell carcinoma by acting as miRNA sponges or by scaffolding protein complexes that activate pathways such as ERK. These findings suggest that disturbances in POLR2A function reshape not only transcriptional output but also the broader non-coding RNA landscape, thereby reinforcing malignant phenotypes. Moreover, pharmacological agents such as triptolide further highlight transcription-dependent vulnerabilities by destabilizing RPB1, offering promising therapeutic opportunities, particularly in drug-resistant cancers. Collectively, POLR2A /RPB1 emerges as a central node linking transcriptional control, noncoding RNA biogenesis, and oncogenic signaling, positioning it as a compelling candidate for biomarker development and targeted therapeutic intervention.
ISSN:1663-9812
DOI:1745087
Fuente:Biological Science Database