ADprep – A Fully‐Automated Software for Large‐scale Multimodal MRI and PET Imaging Workflows

Salvato in:
Dettagli Bibliografici
Pubblicato in:Alzheimer's & Dementia vol. 21 (Dec 1, 2025)
Autore principale: Dehsarvi, Amir
Altri autori: Frontzkowski, Lukas, Dewenter, Anna, Schöll, Michael, Franzmeier, Nicolai
Pubblicazione:
John Wiley & Sons, Inc.
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3286022714
003 UK-CbPIL
022 |a 1552-5260 
022 |a 1552-5279 
024 7 |a 10.1002/alz70862_110825  |2 doi 
035 |a 3286022714 
045 0 |b d20251201 
100 1 |a Dehsarvi, Amir  |u Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Bavaria, Germany 
245 1 |a ADprep – A Fully‐Automated Software for Large‐scale Multimodal MRI and PET Imaging Workflows 
260 |b John Wiley & Sons, Inc.  |c Dec 1, 2025 
513 |a Journal Article 
520 3 |a Background Processing of large‐scale multimodal MRI and PET data is crucial for advancing Alzheimer’s disease (AD) neuroimaging research. However, image processing requires strong expertise on different software packages (SPM/FSL/AFNI/FreeSurfer) and programming languages (R/MATLAB/Python/Bash) and lab‐specific image processing approaches are a major roadblock for harmonization across sites. Therefore, establishing uniform and user‐friendly image processing workflows is crucial for inter‐site standardization and harmonization of neuroimaging data and to reduce bias introduced by different preprocessing strategies. Therefore, we developed the containerized, state‐of‐the‐art, fully automated, neuroimaging toolbox ADprep that integrates robust preprocessing of structural/functional MRI, and multi‐tracer PET (amyloid/tau/FDG/TSPO), generating standardized nifti and atlas‐based spreadsheet outputs across a broad range of brain atlases. ADprep requires no programming expertise and can facilitate harmonized neuroimaging analyses and data sharing across the AD neuroimaging community and will be fully integrated into the cloud‐based GRIP platform. Methods ADprep works on bids‐formatted data and was fully developed in nipype (Figure 1). Preprocessing for structural MRI includes volumetric and cortical thickness assessments for widely used brain atlases (Desikan‐Killiany/Schaefer100‐600/LPBA/Hammers/Neuromorphometrics/Cobra/Destrieux), plus spatially normalized and smoothed tissue segments for voxel‐based morphometry analyses. Functional MRI processing includes slice‐timing and motion correction, nuisance regression, spatial normalization, and functional connectivity assessments for above‐ mentioned atlases. PET processing includes generation of spatially normalized SUVR images for different tracer‐specific reference regions, as well as extraction of atlas‐based SUVRs and partial‐volume correction. Standardized outputs in FreeSurfer space were benchmarked against data from the ADNI imaging core to illustrate comparability with existing pipelines. Cloud‐based GRIP and local cluster implementation is provided to ensure large‐scale data processing. Results ADprep was tested successfully on large‐scale multimodal datasets, including several thousand scans from ADNI, ADNI‐DOD, and A4 with an overall processing failure rate of <4%. Using data from the ADNI PET core for benchmarking, ADprep closely reproduces openly available amyloid‐PET (r=0.99, p&#xa0;<0.001, Figure 2A) and tau‐PET SUVRs (r=0.98, p&#xa0;<0.001, Figure 2B). Runtime is ∼1h for a structural/functional MRI and ∼30min for a PET scan. Conclusions ADprep is user‐friendly and harmonized multimodal neuroimaging pipeline, that can be applied to different neuroimaging datasets by non‐expert users, providing outputs that can be directly used for statistical analyses. 
653 |a Atlases 
653 |a Data processing 
653 |a Software 
653 |a Experts 
653 |a Neuroimaging 
653 |a Standard Progressive Matrices 
653 |a Extraction 
653 |a Brain 
653 |a Functional magnetic resonance imaging 
653 |a Harmonization 
653 |a Medical imaging 
653 |a Multimodality 
653 |a Automation 
653 |a Standardization 
653 |a Pipelines 
653 |a Functional connectivity 
653 |a Programming languages 
653 |a Alzheimer's disease 
653 |a Normalization 
700 1 |a Frontzkowski, Lukas  |u Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Bavaria, Germany 
700 1 |a Dewenter, Anna  |u Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Bavaria, Germany 
700 1 |a Schöll, Michael  |u Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden 
700 1 |a Franzmeier, Nicolai  |u Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU, Munich, Bavaria, Germany 
773 0 |t Alzheimer's & Dementia  |g vol. 21 (Dec 1, 2025) 
786 0 |d ProQuest  |t Consumer Health Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286022714/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3286022714/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286022714/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch