Optimizing Ring AllReduce for Sparse Data

Guardado en:
Bibliografiske detaljer
Udgivet i:ProQuest Dissertations and Theses (2026)
Hovedforfatter: Arunachalam, Anshul
Udgivet:
ProQuest Dissertations & Theses
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3286136717
003 UK-CbPIL
020 |a 9798270248345 
035 |a 3286136717 
045 2 |b d20260101  |b d20261231 
084 |a 66569  |2 nlm 
100 1 |a Arunachalam, Anshul 
245 1 |a Optimizing Ring AllReduce for Sparse Data 
260 |b ProQuest Dissertations & Theses  |c 2026 
513 |a Dissertation/Thesis 
520 3 |a The distributed training of machine learning models via gradient descent is generally conducted by iteratively computing the local gradients of a loss function and aggregating them across all processors. Communicating these gradients during aggregation is often a major cost but sparsification techniques can greatly improve efficiency. One such technique, Top-k gradient compression, ensures that only the k largest components of each local gradient are sent. However, effectively scaling this method can be challenging. The standard ring AllReduce algorithm, which is frequently used to aggregate dense gradients, lacks a counterpart that is optimized for sparse data. Notably, ring algorithms are contention-free, which generally make them easier to scale than other collective communication algorithms. Thus, in practice, the ring AllGather algorithm, which can be trivially adapted for sparse data, may be used instead, even though its bandwidth costs are proportional to the number of utilized processors (unlike ring AllReduce). To provide a more scalable contention-free alternative, we present a variant of ring AllReduce that has been better optimized for sparse data. We compare it to the standard dense ring AllReduce and ring AllGather algorithms, and we evaluate it empirically using gradients sampled from fine-tuning Llama 2 7b. 
653 |a Computer science 
653 |a Computer engineering 
653 |a Information science 
773 0 |t ProQuest Dissertations and Theses  |g (2026) 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286136717/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286136717/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch