Identification and susceptibility assessment of landslides along railway lines using MPSO-RF considering INSAR deformation

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Engineering and Applied Science vol. 72, no. 1 (Dec 2025), p. 264
Autor principal: Guo, Rongchang
Otros Autores: Zhang, Shanghuan
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286147123
003 UK-CbPIL
022 |a 1110-1903 
022 |a 1110-1393 
024 7 |a 10.1186/s44147-025-00806-6  |2 doi 
035 |a 3286147123 
045 2 |b d20251201  |b d20251231 
100 1 |a Guo, Rongchang  |u Lanzhou Jiaotong University, College of Automation and Electrical Engineering, Lanzhou, China (GRID:grid.411290.f) (ISNI:0000 0000 9533 0029) 
245 1 |a Identification and susceptibility assessment of landslides along railway lines using MPSO-RF considering INSAR deformation 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a With the continuous promotion of railway construction in China, railway lines are increasingly extended to areas with complex geological environment, and such areas are prone to landslides and other geological disasters, which seriously threaten the safety of railway operation. The current landslide susceptibility assessment along the railway line relies on static factors such as topography and geology, and fails to take into account the significant time-varying and sudden nature of landslide disasters in complex geological environments, This poses a challenge in terms of satisfying the actual demand for dynamic perception of landslide hazards, and to reflect the deformation characteristics of potential landslides. For this reason, this paper utilizes to introduce the Interferometric Synthetic Aperture Radar (InSAR) technique to dynamically extract the surface deformation characteristics, as an effective supplement to the existing static factors, to enhance the promptness and precision of landslide susceptibility evaluation. Firstly, INSAR was used to obtain surface deformation in the study area and combined with optical remote sensing to identify landslides. Secondly, the deformation rate was taken as a dynamic factor, and 12 static factors, such as elevation and rainfall, were combined to construct a Mean Particle Swarm Optimisation -Random Forest (MPSO-RF) model, and the dynamic factors were introduced into the model through joint training and weighted superposition and performed. accuracy comparison and landslide susceptibility evaluation. Finally, the causes of landslides were analysed by combining the results of INSAR identification and model evaluation. The results show that: (1) the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique can effectively identify potential landslide areas in slow deformation; (2) the accuracy of the joint training and weighted superposition models is improved by 6.54% and 3%, respectively, compared with that of the static model subsequent to the introduction of the INSAR deformation data; (3) the joint evaluation of the SBAS-InSAR and the MPSO-RF model can effectively supplement the traditional static evaluation with the lack of dynamic information. evaluation with the lack of dynamic information. The results of the study can provide theoretical basis and methodological support for the construction of line safety environment platform in railway disaster prevention and monitoring system. 
651 4 |a China 
653 |a Particle swarm optimization 
653 |a Accuracy 
653 |a Geology 
653 |a Rainfall 
653 |a Topography 
653 |a Human engineering 
653 |a Remote sensing 
653 |a Data processing 
653 |a Deformation effects 
653 |a Hazard assessment 
653 |a Disasters 
653 |a Monitoring systems 
653 |a Railway construction 
653 |a Interferometry 
653 |a Interferometric synthetic aperture radar 
653 |a Machine learning 
653 |a Precipitation 
653 |a Landslides & mudslides 
653 |a Static models 
653 |a Earthquakes 
653 |a Geological hazards 
653 |a Algorithms 
653 |a Spatial data 
653 |a Deformation 
653 |a Rivers 
653 |a Landslides 
700 1 |a Zhang, Shanghuan  |u Lanzhou Jiaotong University, College of Automation and Electrical Engineering, Lanzhou, China (GRID:grid.411290.f) (ISNI:0000 0000 9533 0029) 
773 0 |t Journal of Engineering and Applied Science  |g vol. 72, no. 1 (Dec 2025), p. 264 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286147123/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3286147123/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286147123/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch