UAV Sensor Data Fusion for Localization Using Adaptive Multiscale Feature Matching Mechanisms Under GPS-Deprived Environment

Guardado en:
Detalles Bibliográficos
Publicado en:Aerospace vol. 12, no. 12 (2025), p. 1048-1072
Autor principal: Yu-Shun, Wang
Otros Autores: Chia-Hao, Chang
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286238113
003 UK-CbPIL
022 |a 2226-4310 
024 7 |a 10.3390/aerospace12121048  |2 doi 
035 |a 3286238113 
045 2 |b d20250101  |b d20251231 
084 |a 231330  |2 nlm 
100 1 |a Yu-Shun, Wang 
245 1 |a UAV Sensor Data Fusion for Localization Using Adaptive Multiscale Feature Matching Mechanisms Under GPS-Deprived Environment 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The application of unmanned vehicles in civilian and military fields is increasingly widespread. Traditionally, unmanned vehicles primarily rely on Global Positioning Systems (GPSs) for positioning; however, GPS signals can be limited or completely lost in conditions such as building obstructions, indoor environments, or electronic interference. In addition, countries are actively developing GPS jamming and deception technologies for military applications, making precise positioning and navigation of unmanned vehicles in GPS-denied or constrained environments a critical issue that needs to be addressed. In this work, authors propose a method based on Visual–Inertial Odometry (VIO), integrating the extended Kalman filter (EKF), an Inertial Measurement Unit (IMU), optical flow, and feature matching to achieve drone localization in GPS-denied environments. The proposed method uses the heading angle and acceleration data obtained from the IMU as the state prediction for the EKF, and estimates relative displacement using optical flow. It further corrects the optical flow calculation errors through IMU rotation compensation, enhancing the robustness of visual odometry. Additionally, when re-selecting feature points for optical flow, it combines a KAZE feature matching technique for global position correction, reducing drift errors caused by long-duration flight. The authors also employ an adaptive noise adjustment strategy that dynamically adjusts the internal state and measurement noise matrices of the EKF based on the rate of change in heading angle and feature matching reliability, allowing the drone to maintain stable positioning in various flight conditions. According to the simulation results, the proposed method is able to effectively estimate the flight trajectory of drones without GPS. Compared to results that rely solely on optical flow or feature matching, it significantly reduces cumulative errors. This makes it suitable for urban environments, forest areas, and military applications where GPS signals are limited, providing a reliable solution for autonomous navigation and positioning of drones. 
653 |a Accuracy 
653 |a Urban environments 
653 |a Global positioning systems--GPS 
653 |a Optical flow (image analysis) 
653 |a Military applications 
653 |a Military 
653 |a Unmanned aerial vehicles 
653 |a Data integration 
653 |a Unmanned vehicles 
653 |a Localization 
653 |a Jamming 
653 |a Indoor environments 
653 |a Kalman filters 
653 |a Obstructions 
653 |a Cameras 
653 |a Matching 
653 |a Satellite navigation systems 
653 |a Odometers 
653 |a Noise measurement 
653 |a Computer vision 
653 |a Sensors 
653 |a Autonomous navigation 
653 |a Error reduction 
653 |a Algorithms 
653 |a Inertial platforms 
653 |a Flight conditions 
653 |a Extended Kalman filter 
653 |a Multisensor fusion 
700 1 |a Chia-Hao, Chang 
773 0 |t Aerospace  |g vol. 12, no. 12 (2025), p. 1048-1072 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286238113/abstract/embedded/160PP4OP4BJVV2EV?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286238113/fulltextwithgraphics/embedded/160PP4OP4BJVV2EV?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286238113/fulltextPDF/embedded/160PP4OP4BJVV2EV?source=fedsrch