MARC

LEADER 00000nab a2200000uu 4500
001 3286238263
003 UK-CbPIL
022 |a 2226-4310 
024 7 |a 10.3390/aerospace12121036  |2 doi 
035 |a 3286238263 
045 2 |b d20250101  |b d20251231 
084 |a 231330  |2 nlm 
100 1 |a Jiang Renkui  |u Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; jiangrenkui@ioe.ac.cn (R.J.); 
245 1 |a Main Structure of the Survey Camera for CSST: A Paradigm for Structural Design of Large-Scale Complex Space Optical Instruments 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a As the core observation instrument of the China Space Station Telescope (CSST), the Survey Camera (SC) features large volume, heavy weight and high complexity, which poses considerable challenges to the development of its Main Structure (MST). Focusing on the design, optimization and verification of the MST, this study aims to meet the technical requirements of lightweight, high stiffness, high strength and mechanical stability, and provide high-precision Measurement References (MRs) for components such as the Focal Plane Array (FPA). The MST is an M55J carbon fiber/cyanate ester resin composite framework and incorporates titanium alloy inserts for thread machining. The thickness of carbon fiber plies was optimized using size optimization techniques to maximize structural efficiency. The carbon fiber plies and embedded parts along the structural force transmission path were strengthened to improve structural strength. A spherically mounted retroreflector (SMR)–cube mirror composite MR system was employed, along with a contact–non-contact integrated measurement scheme, achieving a position and angle measurement uncertainty of 5.26 μm/5.53″ (3σ). Through experimental verification, the final mass of the MST was controlled at 66.8 kg, and the fundamental frequency reached 120.6 Hz. After assessment via vibration tests and thermovacuum tests, the strength, mechanical stability, and thermal stability of the structure all met the mission requirements. 
651 4 |a China 
653 |a Load 
653 |a Thermal stability 
653 |a Structural engineering 
653 |a Layers 
653 |a Verification 
653 |a Spacecraft components 
653 |a Carbon fiber reinforced plastics 
653 |a Optimization 
653 |a Cameras 
653 |a Space stations 
653 |a Structural design 
653 |a Astronomical instruments 
653 |a Focal plane devices 
653 |a Structural strength 
653 |a Cyanates 
653 |a Optical instruments 
653 |a Carbon 
653 |a Composite materials 
653 |a Position measurement 
653 |a Titanium base alloys 
653 |a Space exploration 
653 |a Space telescopes 
653 |a Temperature 
653 |a Machining 
653 |a Sensors 
653 |a Resonant frequencies 
653 |a Design 
653 |a Astronauts 
653 |a Complexity 
653 |a Design optimization 
653 |a Vibration tests 
653 |a Structural stability 
653 |a Interfaces 
653 |a Contact angle 
700 1 |a Zhang, Ang  |u Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; jiangrenkui@ioe.ac.cn (R.J.); 
700 1 |a Li, Zhaoyang  |u Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; jiangrenkui@ioe.ac.cn (R.J.); 
700 1 |a Liu Enhai  |u Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; jiangrenkui@ioe.ac.cn (R.J.); 
700 1 |a Wang, Libin  |u Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; jiangrenkui@ioe.ac.cn (R.J.); 
700 1 |a Le Sixian  |u Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; jiangrenkui@ioe.ac.cn (R.J.); 
700 1 |a Zhang, Yongchao  |u Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; jiangrenkui@ioe.ac.cn (R.J.); 
700 1 |a Zhang Haini  |u Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; jiangrenkui@ioe.ac.cn (R.J.); 
700 1 |a Wang, Hongyu  |u Changchun Aerospace Composite Materials Co., Ltd., Changchun 130102, China 
700 1 |a Guan Shaohua  |u Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; jiangrenkui@ioe.ac.cn (R.J.); 
700 1 |a Luo Qian  |u Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; jiangrenkui@ioe.ac.cn (R.J.); 
700 1 |a Mao Yufeng  |u Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; jiangrenkui@ioe.ac.cn (R.J.); 
700 1 |a Xu, Weiqi  |u Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; jiangrenkui@ioe.ac.cn (R.J.); 
700 1 |a Chen Panke  |u Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; jiangrenkui@ioe.ac.cn (R.J.); 
700 1 |a Su Haibing  |u Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; jiangrenkui@ioe.ac.cn (R.J.); 
700 1 |a Zhang, Yanqing  |u Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; jiangrenkui@ioe.ac.cn (R.J.); 
700 1 |a Du Junfeng  |u Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; jiangrenkui@ioe.ac.cn (R.J.); 
700 1 |a Shao Junming  |u Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; jiangrenkui@ioe.ac.cn (R.J.); 
700 1 |a Huang Mingzhu  |u Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; jiangrenkui@ioe.ac.cn (R.J.); 
700 1 |a Liang, Wei  |u Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; jiangrenkui@ioe.ac.cn (R.J.); 
773 0 |t Aerospace  |g vol. 12, no. 12 (2025), p. 1036-1062 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286238263/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286238263/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286238263/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch