Design and Optimization Method for Scaled Equivalent Model of T-Tail Configuration Structural Dynamics Simulating Fuselage Stiffness

Guardat en:
Dades bibliogràfiques
Publicat a:Aerospace vol. 12, no. 12 (2025), p. 1063-1088
Autor principal: Chen, Zheng
Altres autors: Ai Xinyu, Feng Weizhe, Yang, Rui, Qian, Wei
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3286238352
003 UK-CbPIL
022 |a 2226-4310 
024 7 |a 10.3390/aerospace12121063  |2 doi 
035 |a 3286238352 
045 2 |b d20250101  |b d20251231 
084 |a 231330  |2 nlm 
100 1 |a Chen, Zheng  |u School of Mechanical Engineering, Dalian University of Technology, Dalian 116023, China 
245 1 |a Design and Optimization Method for Scaled Equivalent Model of T-Tail Configuration Structural Dynamics Simulating Fuselage Stiffness 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The T-tail configuration, while offering advantages for large transport aircraft, is susceptible to peculiar aerodynamic phenomena such as deep stall and flutter, necessitating high-fidelity dynamic scaling for wind tunnel testing. In order to address the issue of similarity in the dynamic characteristics of scaled T-tail models, we propose a comprehensive optimization design method for dynamic scaled equivalent models of T-tail structures with rear fuselages. The development of an elastic-scaled model is accomplished through the integration of the least squares method with a genetic sensitivity hybrid algorithm. In this framework, the objective function is defined as minimizing a weighted sum of the frequency errors and the modal shape discrepancies (<inline-formula>1−</inline-formula> Modal Assurance Criterion) for the first five modes, subject to lower and upper bound constraints on the design variables (e.g., beam cross-sectional dimensions). The findings indicate that the application of finite element modelling in conjunction with multi-objective optimization results in the scaled model that closely aligns with the dynamic characteristics of the actual aircraft structure. Specifically, the frequency error of the optimized model is maintained below 2%, while the modal confidence level exceeds 95%. A ground vibration test (GVT) was conducted on a fabricated scaled model, with all frequency errors below 3%, successfully validating the optimization approach. This GVT-validated high-fidelity model establishes a reliable foundation for subsequent wind tunnel tests, such as flutter and buffet experiments, the results of which are vital for validating the full-scale aircraft’s aeroelastic model and informing critical flight safety assessments. The T-tail elastic model design methodology presented in this study serves as a valuable reference for the analysis of T-tail characteristics and the design of wind tunnel models. Furthermore, it provides insights applicable to multidisciplinary optimisation and the design of wind tunnel models for other similar elastic scaled-down configurations. 
653 |a Finite element method 
653 |a Aircraft aerodynamics 
653 |a Software 
653 |a Fuselages 
653 |a Optimization techniques 
653 |a Wind tunnel testing 
653 |a Equivalence 
653 |a Transport aircraft 
653 |a Least squares method 
653 |a Flutter 
653 |a Wind tunnels 
653 |a Multiple objective analysis 
653 |a Dynamic characteristics 
653 |a Modal assurance criterion 
653 |a Design 
653 |a Airframes 
653 |a Aircraft 
653 |a Flight safety 
653 |a Simulation 
653 |a Aircraft structures 
653 |a Upper bounds 
653 |a Confidence intervals 
653 |a Aerodynamics 
653 |a Objective function 
653 |a Wind tunnel models 
653 |a Mathematical models 
653 |a Errors 
653 |a Algorithms 
653 |a Design optimization 
653 |a Vibration tests 
700 1 |a Ai Xinyu  |u School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116023, China; axy@dlut.edu.cn (X.A.); 
700 1 |a Feng Weizhe  |u School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116023, China; axy@dlut.edu.cn (X.A.); 
700 1 |a Yang, Rui  |u School of Mechanical Engineering, Dalian University of Technology, Dalian 116023, China 
700 1 |a Qian, Wei  |u School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116023, China; axy@dlut.edu.cn (X.A.); 
773 0 |t Aerospace  |g vol. 12, no. 12 (2025), p. 1063-1088 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286238352/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286238352/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286238352/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch