Comparative Analysis of Scenario-Adaptive Control Algorithms for Arrival and Departure Operations in Multi-Airport Systems

Na minha lista:
Detalhes bibliográficos
Publicado no:Aerospace vol. 12, no. 12 (2025), p. 1102-1121
Autor principal: Jiang Furong
Outros Autores: Lu, Tingting, Zhang Zhaoning
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3286238414
003 UK-CbPIL
022 |a 2226-4310 
024 7 |a 10.3390/aerospace12121102  |2 doi 
035 |a 3286238414 
045 2 |b d20250101  |b d20251231 
084 |a 231330  |2 nlm 
100 1 |a Jiang Furong  |u Flight Academy, Civil Aviation University of China, Tianjin 300300, China 
245 1 |a Comparative Analysis of Scenario-Adaptive Control Algorithms for Arrival and Departure Operations in Multi-Airport Systems 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To address the insufficient evaluation of scenario adaptability in the coordinated control of shared waypoints within multi-airport systems, this study proposes two optimization strategies: the Multi-Waypoint Rolling Horizon Control (MWRHC) and the Multi-Waypoint Ant Colony Optimization (MWACO) algorithms. A systematic comparison of their applicability and control performance is conducted. Using empirical data from peak-hour operations in the Yangtze River Delta multi-airport system, the applicability and optimization effectiveness of both algorithms in arrival–departure sequencing are evaluated. The metric “Average Flight Time Improvement” is introduced to quantify and compare the performance of different airports during the optimization process, thereby revealing the operational characteristics of MWRHC and MWACO under varying traffic conditions. The results demonstrate that the MWACO algorithm exhibits superior global optimization capability in high-traffic airport environments, whereas the MWRHC algorithm performs better in local optimization and real-time scheduling under moderate traffic conditions. 
610 4 |a Federal Aviation Administration--FAA 
653 |a Traffic 
653 |a Airports 
653 |a Control algorithms 
653 |a Flight time 
653 |a Global optimization 
653 |a Optimization 
653 |a Airline scheduling 
653 |a Air transportation industry 
653 |a Aviation 
653 |a Algorithms 
653 |a Traffic flow 
653 |a Adaptive control 
653 |a Waypoints 
653 |a Local optimization 
653 |a Real time 
653 |a Ant colony optimization 
653 |a Efficiency 
653 |a Comparative analysis 
653 |a Adaptive algorithms 
653 |a Transportation terminals 
700 1 |a Lu, Tingting  |u College of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China 
700 1 |a Zhang Zhaoning  |u College of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China 
773 0 |t Aerospace  |g vol. 12, no. 12 (2025), p. 1102-1121 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286238414/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286238414/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286238414/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch