Secant-Improved State Estimation Method for Moving Target Tracking Under Video Satellite

Guardado en:
Detalles Bibliográficos
Publicado en:Aerospace vol. 12, no. 12 (2025), p. 1109-1136
Autor principal: Bai Xiangru
Otros Autores: Song, Haibo, Fan Caizhi, Zhang Jinxiao, Huang Hexiang
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286238548
003 UK-CbPIL
022 |a 2226-4310 
024 7 |a 10.3390/aerospace12121109  |2 doi 
035 |a 3286238548 
045 2 |b d20250101  |b d20251231 
084 |a 231330  |2 nlm 
100 1 |a Bai Xiangru 
245 1 |a Secant-Improved State Estimation Method for Moving Target Tracking Under Video Satellite 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a A video satellite has continuous imaging capabilities, which grants it great potential for tracking and monitoring moving targets. The Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are commonly used in the above process. However, the accuracy of EKF estimation is low, and the computational complexity of UKF estimation is high. To address the contradiction between estimation accuracy and real-time performance in mobile-target state estimation, in this paper, we propose a new Kalman Filter with a secant-approximating nonlinear function. Firstly, the truncation error mechanism in the EKF is analysed here to illustrate the limitation of the EKF in approximating the nonlinear function. Then, the paper recommended a secant method to approximate the nonlinear function, which improved fitting accuracy without excessively increasing computational complexity. In order to improve the robustness of the proposed method, an adaptive selection strategy for correction elements is designed based on the advantageous range of secant approximation. The simulation results show that, in conventional ship motion scenarios, the computational accuracy is comparable to that of the EKF. In constant-power acceleration scenarios, the target positioning accuracy was 28.6% better than that of the EKF, and the computational speed was an order of magnitude greater than that of the UKF. 
653 |a Accuracy 
653 |a Kinematics 
653 |a Velocity 
653 |a Truncation errors 
653 |a Lagrange multiplier 
653 |a Neural networks 
653 |a Moving targets 
653 |a Ship motion 
653 |a State estimation 
653 |a Approximation 
653 |a Stochastic models 
653 |a Methods 
653 |a Algorithms 
653 |a Complexity 
653 |a Tracking 
653 |a Kalman filters 
653 |a Localization 
653 |a Real time 
653 |a Satellites 
653 |a Extended Kalman filter 
653 |a Satellite tracking 
653 |a Estimation accuracy 
700 1 |a Song, Haibo 
700 1 |a Fan Caizhi 
700 1 |a Zhang Jinxiao 
700 1 |a Huang Hexiang 
773 0 |t Aerospace  |g vol. 12, no. 12 (2025), p. 1109-1136 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286238548/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286238548/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286238548/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch