Using an Optoelectronic Method for the Non-Destructive Sorting of Hatching Duck Eggs

Sparad:
Bibliografiska uppgifter
I publikationen:AgriEngineering vol. 7, no. 12 (2025), p. 411-431
Huvudupphov: Shokhan, Alpeisov
Övriga upphov: Aidar, Moldazhanov, Akmaral, Kulmakhambetova, Azizov Azimjan, Zhassulan, Otebayev, Zinchenko Dmitriy
Utgiven:
MDPI AG
Ämnen:
Länkar:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3286238586
003 UK-CbPIL
022 |a 2624-7402 
024 7 |a 10.3390/agriengineering7120411  |2 doi 
035 |a 3286238586 
045 2 |b d20250101  |b d20251231 
100 1 |a Shokhan, Alpeisov  |u Faculty of Veterinary Medicine and Animal Science, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan; shokhan.alpeisov@kaznaru.edu.kz (S.A.); otebayev.zhassulan@kaznaru.edu.kz (Z.O.) 
245 1 |a Using an Optoelectronic Method for the Non-Destructive Sorting of Hatching Duck Eggs 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The efficient pre-incubation selection of duck eggs is essential to ensuring stable hatchability, but most existing optoelectronic and machine vision systems have been calibrated for chicken eggs and cannot be directly used for duck eggs because of their larger size, stronger reflectivity and wider morphological variability. This study proposes an optoelectronic method specifically adapted to Adigel duck eggs that combines load cell weighing, infrared distance sensing and dual-projection image processing in a single stationary setup. A total of 300 eggs were measured manually and automatically, and the results were statistically compared. The developed algorithm uses adaptive Gaussian thresholding (51 × 51, C = 2) and a median 5 × 5 filter to stabilize contour extraction on glossy and spotted shells, followed by ellipsoid-based volume estimation with a breed-specific correction factor (Kv = 0.637). The automatic system showed high agreement with manual measurements (r > 0.95 for mass and linear dimensions) and a mean relative error below 2%. Density, the shape index (If) and the shape coefficient (K1) were computed to classify eggs into “suitable”, “borderline” and “unsuitable” categories. A preliminary incubation trial (n = 60) of eggs classified as “suitable” resulted in 92% hatchability, thus confirming the predictive value of the proposed criteria. Unlike chicken-oriented systems, the presented solution provides breed-specific calibration and can be implemented in small and medium hatcheries for the reproducible, non-destructive sorting of hatching duck eggs. 
653 |a Software 
653 |a Ducks 
653 |a Accuracy 
653 |a Nondestructive testing 
653 |a Aquatic birds 
653 |a Vision systems 
653 |a Optoelectronics 
653 |a Waterfowl 
653 |a Image processing 
653 |a Eggs 
653 |a Hatcheries 
653 |a Automation 
653 |a Bird eggs 
653 |a Statistical analysis 
653 |a Hatching 
653 |a Genetic variability 
653 |a Hatchability 
653 |a Adaptive algorithms 
653 |a Strain gauges 
653 |a Agriculture 
653 |a Quality standards 
653 |a Cameras 
653 |a Machine vision 
653 |a Computer vision 
653 |a Farms 
653 |a Chickens 
653 |a Fertility 
653 |a Methods 
653 |a Algorithms 
653 |a Poultry 
653 |a Morphology 
653 |a Reproducibility 
653 |a Incubation 
700 1 |a Aidar, Moldazhanov  |u Faculty of Engineering Technologies, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan; moldazhanov.a@kaznaru.edu.kz (A.M.); kulmakhambetova.akmaral@kaznaru.edu.kz (A.K.); azimjan.azizov@kaznaru.edu.kz (A.A.) 
700 1 |a Akmaral, Kulmakhambetova  |u Faculty of Engineering Technologies, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan; moldazhanov.a@kaznaru.edu.kz (A.M.); kulmakhambetova.akmaral@kaznaru.edu.kz (A.K.); azimjan.azizov@kaznaru.edu.kz (A.A.) 
700 1 |a Azizov Azimjan  |u Faculty of Engineering Technologies, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan; moldazhanov.a@kaznaru.edu.kz (A.M.); kulmakhambetova.akmaral@kaznaru.edu.kz (A.K.); azimjan.azizov@kaznaru.edu.kz (A.A.) 
700 1 |a Zhassulan, Otebayev  |u Faculty of Veterinary Medicine and Animal Science, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan; shokhan.alpeisov@kaznaru.edu.kz (S.A.); otebayev.zhassulan@kaznaru.edu.kz (Z.O.) 
700 1 |a Zinchenko Dmitriy  |u Faculty of Engineering Technologies, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan; moldazhanov.a@kaznaru.edu.kz (A.M.); kulmakhambetova.akmaral@kaznaru.edu.kz (A.K.); azimjan.azizov@kaznaru.edu.kz (A.A.) 
773 0 |t AgriEngineering  |g vol. 7, no. 12 (2025), p. 411-431 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286238586/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286238586/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286238586/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch