Global Aero-Structural Optimization of Composite Forward-Swept Wings Considering Natural Laminar Flow

Guardado en:
Detalles Bibliográficos
Publicado en:Aerospace vol. 12, no. 12 (2025), p. 1076-1097
Autor principal: Wang, Kai
Otros Autores: Wang, Xiaoguang, Han Xiujie, Xiao, Bo, Shan Zhiyuan, Ding, Jie, Wu, Tao
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286238799
003 UK-CbPIL
022 |a 2226-4310 
024 7 |a 10.3390/aerospace12121076  |2 doi 
035 |a 3286238799 
045 2 |b d20250101  |b d20251231 
084 |a 231330  |2 nlm 
100 1 |a Wang, Kai  |u Norinco Group Air Ammunition Research Institute Co., Ltd., Harbin 150030, China; ydguang2025@126.com (X.W.); haomeimei8866@sina.com (X.H.); xb1999@mail.nwpu.edu.cn (B.X.); shanzhiyuan333@163.com (Z.S.); dj986992@126.com (J.D.) 
245 1 |a Global Aero-Structural Optimization of Composite Forward-Swept Wings Considering Natural Laminar Flow 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Forward-swept wings are more suitable for natural laminar flow than backward-swept wings. However, in order to reduce the difficulty of optimization, most aero-structural optimization studies of forward-swept wings do not consider the automatic laminar–turbulent transition, discrete variables, or large-scale constraints, which may result in undesirable optimization results. In this article, an efficient aero-structural optimization method for the composite forward-swept natural laminar flow (FSNLF) wing is proposed, which can solve MDO problems with those issues. Reynolds-averaged Navier–Stokes (RANS) equations coupled with the dual eN transition method are used to simulate subsonic viscous flows. A surrogate-based optimization (SBO) algorithm combining a discrete variable handling method is developed to solve the multidisciplinary design optimization (MDO) problem involving many discrete ply thickness variables of predefined angles (0°/±45°/90°). The Kreisselmeier–Steinhauser (KS) method is employed to handle large-scale geometric constraints, ply fraction constraints and material failure constraints. To verify the effectiveness of the proposed method, we perform the aero-structural optimization of an A320-class composite FSNLF wing. Results show that the proposed method offers great potential in the aero-structural optimization of the composite FSNLF wing. It can handle 32 discrete variables and 11,089 constraints, the drag coefficient and mass of the wing are reduced significantly, and the area of the laminar flow region on the wing upper surface is increased by 24.3% compared with the baseline. 
653 |a Laminar flow 
653 |a Aircraft 
653 |a Swept forward wings 
653 |a Geometric constraints 
653 |a Design optimization 
653 |a Simulation 
653 |a Multidisciplinary design optimization 
653 |a Turbulence models 
653 |a Drag coefficients 
653 |a Aerodynamics 
653 |a Laminar composites 
653 |a Reynolds number 
653 |a Reynolds averaged Navier-Stokes method 
653 |a Viscous flow 
653 |a Shear strength 
653 |a Composite materials 
653 |a Materials failure 
700 1 |a Wang, Xiaoguang  |u Norinco Group Air Ammunition Research Institute Co., Ltd., Harbin 150030, China; ydguang2025@126.com (X.W.); haomeimei8866@sina.com (X.H.); xb1999@mail.nwpu.edu.cn (B.X.); shanzhiyuan333@163.com (Z.S.); dj986992@126.com (J.D.) 
700 1 |a Han Xiujie  |u Norinco Group Air Ammunition Research Institute Co., Ltd., Harbin 150030, China; ydguang2025@126.com (X.W.); haomeimei8866@sina.com (X.H.); xb1999@mail.nwpu.edu.cn (B.X.); shanzhiyuan333@163.com (Z.S.); dj986992@126.com (J.D.) 
700 1 |a Xiao, Bo  |u Norinco Group Air Ammunition Research Institute Co., Ltd., Harbin 150030, China; ydguang2025@126.com (X.W.); haomeimei8866@sina.com (X.H.); xb1999@mail.nwpu.edu.cn (B.X.); shanzhiyuan333@163.com (Z.S.); dj986992@126.com (J.D.) 
700 1 |a Shan Zhiyuan  |u Norinco Group Air Ammunition Research Institute Co., Ltd., Harbin 150030, China; ydguang2025@126.com (X.W.); haomeimei8866@sina.com (X.H.); xb1999@mail.nwpu.edu.cn (B.X.); shanzhiyuan333@163.com (Z.S.); dj986992@126.com (J.D.) 
700 1 |a Ding, Jie  |u Norinco Group Air Ammunition Research Institute Co., Ltd., Harbin 150030, China; ydguang2025@126.com (X.W.); haomeimei8866@sina.com (X.H.); xb1999@mail.nwpu.edu.cn (B.X.); shanzhiyuan333@163.com (Z.S.); dj986992@126.com (J.D.) 
700 1 |a Wu, Tao  |u Northwest Institute of Mechanical and Electrical Engineering, Xianyang 712099, China; gdwutao@163.com 
773 0 |t Aerospace  |g vol. 12, no. 12 (2025), p. 1076-1097 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286238799/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286238799/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286238799/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch