Optimization of Continuous Flow-Shop Scheduling Considering Due Dates

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:Algorithms vol. 18, no. 12 (2025), p. 788-815
מחבר ראשי: Zheng Feifeng
מחברים אחרים: Zhang Chunyao, Liu, Ming
יצא לאור:
MDPI AG
נושאים:
גישה מקוונת:Citation/Abstract
Full Text + Graphics
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3286249882
003 UK-CbPIL
022 |a 1999-4893 
024 7 |a 10.3390/a18120788  |2 doi 
035 |a 3286249882 
045 2 |b d20250101  |b d20251231 
084 |a 231333  |2 nlm 
100 1 |a Zheng Feifeng  |u Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China 
245 1 |a Optimization of Continuous Flow-Shop Scheduling Considering Due Dates 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a For a no-wait flow shop with continuous-flow characteristics, this study simultaneously considers machine setup times and rated processing speed constraints, aiming to minimize the sum of the maximum completion time and the maximum tardiness. First, lower bounds for the maximum completion time, the maximum tardiness, and the total objective function are developed. Second, a mixed-integer programming (MIP) model is formulated for the problem, and nonlinear elements are subsequently linearized via time discretization. Due to the computational complexity of the problem, two algorithms are proposed: a heuristic algorithm with fixed machine links and greedy rules (HAFG) and a genetic algorithm based on altering machine combinations (GAAM) for solving large-scale instances. The Earliest Due Date (EDD) rule is used as baselines for algorithmic comparison. To better understand the behaviors of the two algorithms, we observe the two components of the objective function separately. The results show that, compared with the EDD rule and GAAM, the HAFG algorithm tends to focus more on optimizing the maximum completion time. The performance of both algorithms is evaluated using their relative deviations from the developed lower bounds and is compared against the EDD rule. Numerical experiments demonstrate that both HAFG and GAAM significantly outperform the EDD rule. In large-scale instances, the HAFG algorithm achieves a gap of about 4%, while GAAM reaches a gap of about 3%, which is very close to the lower bound. In contrast, the EDD rule shows a deviation of about 10%. Combined with a sensitivity analysis on the number of machines, the proposed framework provides meaningful managerial insights for continuous-flow production environments. 
653 |a Lower bounds 
653 |a Scheduling 
653 |a Linear programming 
653 |a Genetic algorithms 
653 |a Integer programming 
653 |a Sensitivity analysis 
653 |a Optimization 
653 |a Continuous flow 
653 |a Deviation 
653 |a Energy efficiency 
653 |a Flow characteristics 
653 |a Algorithms 
653 |a Mixed integer 
653 |a Manufacturing 
653 |a Heuristic 
653 |a Completion time 
653 |a Neighborhoods 
653 |a Energy consumption 
653 |a Lateness 
653 |a Job shop scheduling 
653 |a Heuristic methods 
700 1 |a Zhang Chunyao  |u Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China 
700 1 |a Liu, Ming  |u School of Economics & Management, Tongji University, Shanghai 200092, China 
773 0 |t Algorithms  |g vol. 18, no. 12 (2025), p. 788-815 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286249882/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286249882/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286249882/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch