Metaheuristic Hyperparameter Optimization Using Optimal Latin Hypercube Sampling and Response Surface Methodology

Guardado en:
Detalles Bibliográficos
Publicado en:Algorithms vol. 18, no. 12 (2025), p. 732-750
Autor principal: Pamplona Daniel A.
Otros Autores: Habermann Mateus, Rebouças Sergio, Alves Claudio Jorge P.
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286250127
003 UK-CbPIL
022 |a 1999-4893 
024 7 |a 10.3390/a18120732  |2 doi 
035 |a 3286250127 
045 2 |b d20250101  |b d20251231 
084 |a 231333  |2 nlm 
100 1 |a Pamplona Daniel A.  |u Graduate Program in Operational Applications, Aeronautical Institute of Technology, São José dos Campos 12228-612, SP, Brazil 
245 1 |a Metaheuristic Hyperparameter Optimization Using Optimal Latin Hypercube Sampling and Response Surface Methodology 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Hyperparameters allow metaheuristics to be tuned to a wide range of problems. However, even though formalized tuning of metaheuristic parameters can affect the quality of the solution, it is rarely performed. The empirical selection method and the trial-and-error method are the primary conventional parameter selection techniques for optimization heuristics. Both require a priori knowledge of the problem and involve multiple experiments requiring significant time and effort, yet neither guarantees the attainment of optimum parameter values. Of the studies that perform formal parameter tuning, experimental design is the most commonly used method. Although experimental design is feasible for systematic experimentation, it is also time-consuming and requires extensive effort for large optimization problems. The computational effort in this study refers to the number of experimental runs required for hyperparameter tuning, not the computational time for each run. This study proposes a simpler, faster method based on an optimized Latin hypercube sampling (OLHS) technique augmented with response surface methodology for estimating the best hyperparameter settings for a hybrid simulated annealing algorithm. The method is applied to solve the aircraft landing problem with time windows (ALPTW), a combinatorial optimization problem that seeks to determine the optimal landing sequence within a predetermined time window while maintaining minimum separation criteria. The results showed that the proposed method improves sampling efficiency, providing better coverage and higher accuracy with 70% fewer sample points and only 30% of the total runs compared to full factorial design. 
653 |a Aircraft 
653 |a Aircraft landing 
653 |a Combinatorial analysis 
653 |a Optimization 
653 |a Factorial design 
653 |a Computational efficiency 
653 |a Response surface methodology 
653 |a Design 
653 |a Design of experiments 
653 |a Hypercubes 
653 |a Tuning 
653 |a Methods 
653 |a Algorithms 
653 |a Experimentation 
653 |a Windows (intervals) 
653 |a Simulated annealing 
653 |a Trial and error methods 
653 |a Parameters 
653 |a Computing time 
653 |a Heuristic methods 
653 |a Efficiency 
653 |a Variance analysis 
653 |a Latin hypercube sampling 
700 1 |a Habermann Mateus  |u Graduate Program in Operational Applications, Aeronautical Institute of Technology, São José dos Campos 12228-612, SP, Brazil 
700 1 |a Rebouças Sergio  |u Graduate Program in Operational Applications, Aeronautical Institute of Technology, São José dos Campos 12228-612, SP, Brazil 
700 1 |a Alves Claudio Jorge P.  |u Department of Air Transportation, Aeronautical Institute of Technology, São José dos Campos 12228-612, SP, Brazil 
773 0 |t Algorithms  |g vol. 18, no. 12 (2025), p. 732-750 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286250127/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286250127/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286250127/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch