Recent Trends in Machine Learning for Healthcare Big Data Applications: Review of Velocity and Volume Challenges

Сохранить в:
Библиографические подробности
Опубликовано в::Algorithms vol. 18, no. 12 (2025), p. 772-806
Главный автор: Khudhur, Doaa Yaseen
Другие авторы: Shibghatullah Abdul Samad, Shaker Khalid, Abdul Latif Aliza, Muda, Zakaria Che
Опубликовано:
MDPI AG
Предметы:
Online-ссылка:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3286250375
003 UK-CbPIL
022 |a 1999-4893 
024 7 |a 10.3390/a18120772  |2 doi 
035 |a 3286250375 
045 2 |b d20250101  |b d20251231 
084 |a 231333  |2 nlm 
100 1 |a Khudhur, Doaa Yaseen  |u Department of Informatics, College of Computing & Information Technology, Universiti Tenaga Nasional, Putrajaya Campus, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia 
245 1 |a Recent Trends in Machine Learning for Healthcare Big Data Applications: Review of Velocity and Volume Challenges 
260 |b MDPI AG  |c 2025 
513 |a Review 
520 3 |a The integration and emerging adoption of machine learning (ML) algorithms in healthcare big data has revolutionized clinical decision-making, predictive analytics, and real-time medical diagnostics. However, the application of machine learning in healthcare big data faces computational challenges, particularly in efficiently processing and training on large-scale, high-velocity data generated by healthcare organizations worldwide. In response to these issues, this study critically reviews and examines current state-of-the-art advancements in machine learning algorithms and big data frameworks within healthcare analytics, with a particular emphasis on solutions addressing data volume and velocity. The reviewed literature is categorized into three key areas: (1) efficient techniques, arithmetic operations, and dimensionality reduction; (2) advanced and specialized processing hardware; and (3) clustering and parallel processing methods. Key research gaps and open challenges are identified based on the evaluation of the literature across these categories, and important future research directions are discussed in detail. Among the several proposed solutions are the utilization of federated learning and decentralized data processing, as well as efficient parallel processing through big data frameworks such as Apache Spark, neuromorphic computing, and multi-swarm large-scale optimization algorithms; these highlight the importance of interdisciplinary innovations in algorithm design, hardware efficiency, and distributed computing frameworks, which collectively contribute to faster, more accurate, and resource-efficient AI-driven healthcare big data analytics and applications. This research supports the UNSDG 3 (Good Health and Well-Being) and UNSDG 9 (Industry, Innovation and Infrastructure) by integration of machine learning in healthcare big data and promoting product innovation in the healthcare industry, respectively. 
653 |a Parallel processing 
653 |a Accuracy 
653 |a Data processing 
653 |a Predictive analytics 
653 |a Datasets 
653 |a Big Data 
653 |a Hardware 
653 |a Optimization 
653 |a Feature selection 
653 |a Data analysis 
653 |a Machine learning 
653 |a Health care industry 
653 |a Medical imaging 
653 |a Field programmable gate arrays 
653 |a Innovations 
653 |a Distributed processing 
653 |a Efficiency 
653 |a Velocity 
653 |a Electronic health records 
653 |a Health care 
653 |a Costs 
653 |a Clustering 
653 |a Clinical decision making 
653 |a Algorithms 
653 |a Real time 
653 |a Federated learning 
700 1 |a Shibghatullah Abdul Samad  |u Department of Informatics, College of Computing & Information Technology, Universiti Tenaga Nasional, Putrajaya Campus, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia 
700 1 |a Shaker Khalid  |u Departments of Artificial Intelligence & Information Technology, College of Computer Science and Information Technology, University of Anbar, Ramadi 31001, Iraq 
700 1 |a Abdul Latif Aliza  |u Department of Informatics, College of Computing & Information Technology, Universiti Tenaga Nasional, Putrajaya Campus, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia 
700 1 |a Muda, Zakaria Che  |u Faculty of Engineering and Quantity Surveying, INTI International University, Nilai 71800, Negeri Sembilan, Malaysia; zakaria.chemuda@newinti.edu.my 
773 0 |t Algorithms  |g vol. 18, no. 12 (2025), p. 772-806 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286250375/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286250375/fulltextwithgraphics/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286250375/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch