Confidence-Guided Code Recognition for Shipping Containers Using Deep Learning

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:Big Data and Cognitive Computing vol. 9, no. 12 (2025), p. 316-339
मुख्य लेखक: Hlabisa Sanele
अन्य लेखक: Khuboni Ray Leroy, Jules-Raymond, Tapamo
प्रकाशित:
MDPI AG
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text + Graphics
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3286257472
003 UK-CbPIL
022 |a 2504-2289 
024 7 |a 10.3390/bdcc9120316  |2 doi 
035 |a 3286257472 
045 2 |b d20250101  |b d20251231 
100 1 |a Hlabisa Sanele 
245 1 |a Confidence-Guided Code Recognition for Shipping Containers Using Deep Learning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Shipping containers are vital to the transportation industry due to their cost-effectiveness and compatibility with intermodal systems. With the significant increase in container usage since the mid-20th century, manual tracking at port terminals has become inefficient and prone to errors. Recent advancements in Deep Learning for object detection have introduced Computer Vision as a solution for automating this process. However, challenges such as low-quality images, varying font sizes & illumination, and environmental conditions hinder recognition accuracy. This study explores various architectures and proposes a Container Code Localization Network (CCLN), utilizing ResNet and UNet for code identification, and a Container Code Recognition Network (CCRN), which combines Convolutional Neural Networks with Long Short-Term Memory to convert the image text into a machine-readable format. By enhancing existing shipping container localization and recognition datasets with additional images, our models exhibited improved generalization capabilities on other datasets, such as Syntext, for text recognition. Experimental results demonstrate that our system achieves <inline-formula>97.93%</inline-formula> accuracy at <inline-formula>64.11</inline-formula> frames per second under challenging conditions such as varying font sizes, illumination, tilt, and depth, effectively simulating real port terminal environments. The proposed solution promises to enhance workflow efficiency and productivity in container handling processes, making it highly applicable in modern port operations. 
653 |a Datasets 
653 |a Accuracy 
653 |a Ports 
653 |a Deep learning 
653 |a Cargo containers 
653 |a Fonts 
653 |a Computer terminals 
653 |a Artificial neural networks 
653 |a Transportation networks 
653 |a Radio frequency identification 
653 |a Computer vision 
653 |a Image quality 
653 |a Object recognition 
653 |a Localization 
653 |a Illumination 
653 |a Cost effectiveness 
653 |a Shipping 
700 1 |a Khuboni Ray Leroy 
700 1 |a Jules-Raymond, Tapamo 
773 0 |t Big Data and Cognitive Computing  |g vol. 9, no. 12 (2025), p. 316-339 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286257472/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286257472/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286257472/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch