Research on Optimal Down-Sampling Method of Segmental Beam Edge Based on Double Regions

Uloženo v:
Podrobná bibliografie
Vydáno v:Buildings vol. 15, no. 24 (2025), p. 4410-4426
Hlavní autor: Yang, Jiayan
Další autoři: Hu, Zhihao, Li, Menghui, Jia Xingli, Guo Junheng
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3286267691
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15244410  |2 doi 
035 |a 3286267691 
045 2 |b d20250101  |b d20251231 
084 |a 231437  |2 nlm 
100 1 |a Yang, Jiayan  |u China Harbour Engineering Company Ltd., Beijing 100027, China; 2023221252@chd.edu.cn 
245 1 |a Research on Optimal Down-Sampling Method of Segmental Beam Edge Based on Double Regions 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the development of three-dimensional laser scanning technology, a large number of point cloud data generated has caused great computational pressure on storage, processing, and visualization. To this end, this paper proposes an edge-optimized voxel grid down-sampling method based on two regions, which aims to reduce the amount of data while preserving key geometric accuracy and details. By defining the two regions of point cloud data, this method proposes a two-region point cloud down-sampling model according to the different point cloud deviation characteristics of the two regions, so as to simplify the point cloud data volume and accurately identify and retain the edge contour feature points. The experimental results show that the proposed method performs well under both low-precision and high-precision conditions. It can maintain the geometric features and surface area of the point cloud while simplifying the point cloud. Compared with other methods, it has outstanding performance in the top surface contour deviation index and surface area change rate. It has a high accuracy retention ability and good simplification effect and is suitable for a variety of application scenarios. 
653 |a Deviation 
653 |a Accuracy 
653 |a Contours 
653 |a Methods 
653 |a Deep learning 
653 |a Surface area 
653 |a Algorithms 
653 |a Sampling 
653 |a Sampling methods 
653 |a Geometric accuracy 
653 |a Efficiency 
700 1 |a Hu, Zhihao  |u School of Highway, Chang’an University, Xi’an 710064, China; 2023221320@chd.edu.cn (Z.H.); 2024021064@chd.edu.cn (J.G.) 
700 1 |a Li, Menghui  |u Road&Bridge International Co., Ltd., Beijing 101117, China; 2023221236@chd.edu.cn 
700 1 |a Jia Xingli  |u School of Highway, Chang’an University, Xi’an 710064, China; 2023221320@chd.edu.cn (Z.H.); 2024021064@chd.edu.cn (J.G.) 
700 1 |a Guo Junheng  |u School of Highway, Chang’an University, Xi’an 710064, China; 2023221320@chd.edu.cn (Z.H.); 2024021064@chd.edu.cn (J.G.) 
773 0 |t Buildings  |g vol. 15, no. 24 (2025), p. 4410-4426 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286267691/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286267691/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286267691/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch