A Short-Term Building Load Prediction Method Based on Modal Decomposition and Deep Learning

Guardado en:
書目詳細資料
發表在:Buildings vol. 15, no. 24 (2025), p. 4455-4486
主要作者: Lu Shengze
其他作者: Yu, Dandan, Ding, Yan, Chen Wanyue, Liang Chuanzhi, Yuan Jihui, Tian Zhe, Lu Yakai
出版:
MDPI AG
主題:
在線閱讀:Citation/Abstract
Full Text + Graphics
Full Text - PDF
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!

MARC

LEADER 00000nab a2200000uu 4500
001 3286268202
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15244455  |2 doi 
035 |a 3286268202 
045 2 |b d20250101  |b d20251231 
084 |a 231437  |2 nlm 
100 1 |a Lu Shengze  |u School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China 
245 1 |a A Short-Term Building Load Prediction Method Based on Modal Decomposition and Deep Learning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Accurate cooling load prediction is essential for energy-efficient HVAC system operation. However, the stochastic and nonlinear nature of load data challenges conventional neural networks, causing prediction delays and errors. To address this, a novel hybrid model is developed. The approach first applies a two-stage decomposition (CEEMDAN with K-means and VMD) to process complex cooling load data. Then, a CNN-BiLSTM network optimized by the Crested Porcupine Optimizer and integrated with an attention mechanism is constructed for prediction. Experimental results demonstrate the model’s high performance, achieving a 96.75% prediction accuracy with a MAPE of 3.25% and an R2 of 0.9929. The proposed model shows strong robustness and generalization, providing a reliable reference for intelligent building energy management. 
653 |a Energy management 
653 |a Accuracy 
653 |a Green buildings 
653 |a Deep learning 
653 |a Forecasting 
653 |a Energy efficiency 
653 |a Signal processing 
653 |a HVAC equipment 
653 |a Data processing 
653 |a Smart buildings 
653 |a Machine learning 
653 |a Time series 
653 |a Cooling loads 
653 |a Energy consumption 
653 |a Innovations 
653 |a Cooling 
653 |a Predictions 
653 |a Neural networks 
653 |a Support vector machines 
653 |a Decomposition 
653 |a HVAC 
653 |a Engineering 
653 |a Optimization algorithms 
653 |a Cooling systems 
700 1 |a Yu, Dandan  |u School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China 
700 1 |a Ding, Yan  |u School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China 
700 1 |a Chen Wanyue  |u School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China 
700 1 |a Liang Chuanzhi  |u Center of Science and Technology & Industrialization Development, Ministry of Housing and Urban-Rural Development, Beijing 100835, China 
700 1 |a Yuan Jihui  |u Department of Living Environment Design, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka 558-8585, Japan 
700 1 |a Tian Zhe  |u School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China 
700 1 |a Lu Yakai  |u School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China 
773 0 |t Buildings  |g vol. 15, no. 24 (2025), p. 4455-4486 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286268202/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286268202/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286268202/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch