IoT-Enabled Indoor Real-Time Tracking Using UWB for Smart Warehouse Management

Na minha lista:
Detalhes bibliográficos
Publicado no:Computers vol. 14, no. 12 (2025), p. 510-524
Autor principal: Masoudi Bahareh
Outros Autores: Razi Nazila, Rezazadeh Javad
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3286269773
003 UK-CbPIL
022 |a 2073-431X 
024 7 |a 10.3390/computers14120510  |2 doi 
035 |a 3286269773 
045 2 |b d20250101  |b d20251231 
084 |a 231447  |2 nlm 
100 1 |a Masoudi Bahareh  |u Department of Information Technology, Azad University of North Tehran Branch, Tehran 15324587, Iran 
245 1 |a IoT-Enabled Indoor Real-Time Tracking Using UWB for Smart Warehouse Management 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The Internet of Things (IoT) is transforming industrial operations, particularly under Industry 4.0, by enabling real-time connectivity and automation. Accurate indoor localization is critical for warehouse management, where GPS-based solutions are ineffective due to signal obstruction. This paper presents a smart indoor positioning system (IPS) integrating Ultra-Wideband (UWB) sensors with Long Short-Term Memory (LSTM) neural networks and Kalman filtering, employing a tailored data fusion sequence and parameter optimization for real-time object tracking. The system was deployed in a 54 m2 warehouse section on forklifts equipped with UWB modules and QR scanners. Experimental evaluation considered accuracy, reliability, and noise resilience in cluttered industrial conditions. Results, validated with RMSE, MAE, and standard deviation, demonstrate that the hybrid Kalman–LSTM model improves localization accuracy by up to 4% over baseline methods, outperforming conventional sensor fusion approaches. Comparative analysis with standard benchmarks highlights the system’s robustness under interference and its scalability for larger warehouse operations. These findings confirm that combining temporal pattern learning with advanced sensor fusion significantly enhances tracking precision. This research contributes a reproducible and adaptable framework for intelligent warehouse management, offering practical benefits aligned with Industry 4.0 objectives. 
653 |a Accuracy 
653 |a Deep learning 
653 |a Internet of Things 
653 |a Scanners 
653 |a Estimates 
653 |a Industry 4.0 
653 |a Radio frequency identification 
653 |a Data integration 
653 |a Navigation systems 
653 |a Automation 
653 |a Tracking 
653 |a Localization 
653 |a Kalman filters 
653 |a Ultrawideband 
653 |a Machine learning 
653 |a Warehousing management 
653 |a Neural networks 
653 |a Sensors 
653 |a Industrial Internet of Things 
653 |a Industrial applications 
653 |a Real time 
653 |a Data exchange 
653 |a Fork lift trucks 
653 |a Multisensor fusion 
653 |a Wireless access points 
700 1 |a Razi Nazila  |u Crown Institute of Higher Education (CIHE), IT School, Sydney 2060, Australia; nazila.razi@cihe.edu.au 
700 1 |a Rezazadeh Javad  |u Crown Institute of Higher Education (CIHE), IT School, Sydney 2060, Australia; nazila.razi@cihe.edu.au 
773 0 |t Computers  |g vol. 14, no. 12 (2025), p. 510-524 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286269773/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286269773/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286269773/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch