Optimizing Cloudlets for Faster Feedback in LLM-Based Code-Evaluation Systems

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers vol. 14, no. 12 (2025), p. 557-571
1. Verfasser: Daniel-Florin, Dosaru
Weitere Verfasser: Olteanu Alexandru-Corneliu, Țăpuș Nicolae
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3286269801
003 UK-CbPIL
022 |a 2073-431X 
024 7 |a 10.3390/computers14120557  |2 doi 
035 |a 3286269801 
045 2 |b d20250101  |b d20251231 
084 |a 231447  |2 nlm 
100 1 |a Daniel-Florin, Dosaru 
245 1 |a Optimizing Cloudlets for Faster Feedback in LLM-Based Code-Evaluation Systems 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper addresses the challenge of optimizing cloudlet resource allocation in a code evaluation system. The study models the relationship between system load and response time when users submit code to an online code-evaluation platform, LambdaChecker, which operates a cloudlet-based processing pipeline. The pipeline includes code correctness checks, static analysis, and design-pattern detection using a local Large Language Model (LLM). To optimize the system, we develop a mathematical model and apply it to the LambdaChecker resource management problem. The proposed approach is evaluated using both simulations and real contest data, with a focus on improvements in average response time, resource utilization efficiency, and user satisfaction. The results indicate that adaptive scheduling and workload prediction effectively reduce waiting times without substantially increasing operational costs. Overall, the study suggests that systematic cloudlet optimization can enhance the educational value of automated code evaluation systems by improving responsiveness while preserving sustainable resource usage. 
653 |a Object oriented programming 
653 |a Software 
653 |a User experience 
653 |a Computer science 
653 |a Mathematical models 
653 |a Optimization techniques 
653 |a Resource allocation 
653 |a Automation 
653 |a Resource management 
653 |a Workloads 
653 |a Feedback 
653 |a Generative artificial intelligence 
653 |a Simulation 
653 |a Static code analysis 
653 |a Large language models 
653 |a Educational objectives 
653 |a Pattern analysis 
653 |a Science education 
653 |a User satisfaction 
653 |a Optimization 
653 |a Teaching assistants 
653 |a Response time 
653 |a Resource utilization 
653 |a Learning 
700 1 |a Olteanu Alexandru-Corneliu 
700 1 |a Țăpuș Nicolae 
773 0 |t Computers  |g vol. 14, no. 12 (2025), p. 557-571 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286269801/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286269801/fulltextwithgraphics/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286269801/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch