Interpretation of Copper Rolling Texture Components Development Based on Computer Modeling

Na minha lista:
Detalhes bibliográficos
Publicado no:Crystals vol. 15, no. 12 (2025), p. 1011-1039
Autor principal: Łatas Wiesław
Outros Autores: Wróbel Mirosław, Wierzbanowski Krzysztof, Byrska-Wójcik Dorota
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:Plastic deformation processes are widely used in metal forming. At the same time, they produce crystallographic textures that determine a material’s anisotropy—for example, its elastic, plastic, or magnetic anisotropy. Because these properties have significant practical implications and require precise control, understanding the mechanisms of texture formation is essential. Consequently, the evolution of texture during plastic forming remains an important topic for both scientific and engineering communities. The most important models describing crystallographic texture development during plastic deformation were briefly reviewed. Based on a comparison of experimental results with numerical simulations obtained using the authors’ original fluctuating stress state (FSS) model, the main texture components were identified. It was shown that their volume fractions are primarily related to deformation fields in grains of polycrystalline material constrained by extreme boundary conditions, as well as to anisotropy in slip system hardening (A). The influence of both parameters and rolling true strain (1.5 and 2) on the copper rolling texture was evaluated by quantifying the fractions of the texture components, including the strong ones (B, S, Cu) and the weaker ones (G, W, rW). This constitutes the main novelty of the present work.
ISSN:2073-4352
DOI:10.3390/cryst15121011
Fonte:Materials Science Database