Multimodal Fusion and Dynamic Resource Optimization for Robust Cooperative Localization of Low-Cost UAVs

Guardado en:
Detalles Bibliográficos
Publicado en:Drones vol. 9, no. 12 (2025), p. 820-847
Autor principal: Liu Hongfu
Otros Autores: Fu Yajing, Ma Yangyang, Zhang Wanpeng
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3286273121
003 UK-CbPIL
022 |a 2504-446X 
024 7 |a 10.3390/drones9120820  |2 doi 
035 |a 3286273121 
045 2 |b d20250101  |b d20251231 
100 1 |a Liu Hongfu 
245 1 |a Multimodal Fusion and Dynamic Resource Optimization for Robust Cooperative Localization of Low-Cost UAVs 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights"> What are the main findings? <list list-type="bullet"> <list-item> </list-item>Proposes a novel collaborative localization algorithm integrating a cross-modal attention mechanism to fuse vision, radar, and lidar data, significantly enhancing robustness in occluded and adverse weather conditions. <list-item> Proposes a dynamic resource optimization framework using integer linear programming, enabling real-time allocation of computational and communication resources to prevent node overload and improve system efficiency. </list-item> What are the implications of the main findings? <list list-type="bullet"> <list-item> </list-item>Demonstrates superior performance in realistic simulations, significant improvements in positioning accuracy, resource efficiency, and fault recovery, demonstrating strong potential for applications in complex tasks. <list-item> Provides a practical, low-cost system solution validated in complex scenarios, establishing a viable pathway for the engineering deployment of robust UAV swarms. </list-item> To overcome the challenges of low positioning accuracy and inefficient resource utilization in cooperative target localization by unmanned aerial vehicles (UAVs) in complex environments, this paper presents a cooperative localization algorithm that integrates multimodal data fusion with dynamic resource optimization. By leveraging a cross-modal attention mechanism, the algorithm effectively combines complementary information from visual, radar, and lidar sensors, thereby enhancing localization robustness under occlusions, poor illumination, and adverse weather conditions. Furthermore, a real-time resource scheduling model based on integer linear programming is introduced to dynamically allocate computational and communication resources, which mitigates node overload and minimizes resource waste. Experimental evaluations in scenarios including maritime search and rescue, urban occlusions, and dynamic resource fluctuations show that the proposed algorithm achieves significant improvements in positioning accuracy, resource efficiency, and fault recovery, demonstrating strong potential for applications in complex tasks, demonstrating its potential as a viable solution for low-cost UAV swarm applications in complex environments. 
653 |a Linear programming 
653 |a Accuracy 
653 |a Collaboration 
653 |a Adaptability 
653 |a Integer programming 
653 |a Communication 
653 |a Bandwidths 
653 |a Evacuations & rescues 
653 |a Optimization 
653 |a Task complexity 
653 |a Efficiency 
653 |a Adaptation 
653 |a Recovery 
653 |a Attention 
653 |a Unmanned aerial vehicles 
653 |a Overloading 
653 |a Data integration 
653 |a Localization 
653 |a Scheduling 
653 |a Low cost 
653 |a Real-time programming 
653 |a Sensors 
653 |a Resource scheduling 
653 |a Design 
653 |a Algorithms 
653 |a Drones 
653 |a Weather 
653 |a Robustness (mathematics) 
653 |a Resource utilization 
653 |a Lidar 
653 |a Kalman filters 
700 1 |a Fu Yajing 
700 1 |a Ma Yangyang 
700 1 |a Zhang Wanpeng 
773 0 |t Drones  |g vol. 9, no. 12 (2025), p. 820-847 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286273121/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286273121/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286273121/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch