Energy-Efficient Train Control Based on Energy Consumption Estimation Model and Deep Reinforcement Learning

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:Electronics vol. 14, no. 24 (2025), p. 4939-4962
מחבר ראשי: Liu, Jia
מחברים אחרים: Wang, Yuemiao, Liu, Yirong, Li, Xiaoyu, Chen, Fuwang, Lu, Shaofeng
יצא לאור:
MDPI AG
נושאים:
גישה מקוונת:Citation/Abstract
Full Text + Graphics
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3286275932
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14244939  |2 doi 
035 |a 3286275932 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Liu, Jia  |u PCI Technology Group Co., Ltd., Guangzhou 510665, China 
245 1 |a Energy-Efficient Train Control Based on Energy Consumption Estimation Model and Deep Reinforcement Learning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Energy-efficient Train Control (EETC) strategy needs to meet safety, punctuality, and energy-saving requirements during train operation, and puts forward higher requirements for online use and adaptive ability. In order to meet the above requirements and reduce the dependence on an accurate mathematical model of train operation, this paper proposes a train-speed trajectory-optimization method combining data-driven energy consumption estimation and deep reinforcement learning. First of all, using real subway operation data, the key unit basic resistance coefficient in train operation is analyzed by regression. Then, based on the identified model, the energy consumption experiment data of train operation is generated, into which Gaussian noise is introduced to simulate real-world sensor measurement errors and environmental uncertainties. The energy consumption estimation model based on a Backpropagation (BP) neural network is constructed and trained. Finally, the energy consumption estimation model serves as a component within the Deep Deterministic Policy Gradient (DDPG) algorithm environment, and the action adjustment mechanism and reward are designed by integrating the expert experience to complete the optimization training of the strategy network. Experimental results demonstrate that the proposed method reduces energy consumption by approximately 4.4% compared to actual manual operation data. Furthermore, it achieves a solution deviation of less than 0.3% compared to the theoretical optimal baseline (Dynamic Programming), proving its ability to approximate global optimality. In addition, the proposed algorithm can adapt to the changes in train mass, initial set running time, and halfway running time while ensuring convergence performance and trajectory energy saving during online use. 
651 4 |a China 
653 |a Mathematical programming 
653 |a Subways 
653 |a Dynamic programming 
653 |a Accuracy 
653 |a Deep learning 
653 |a Trajectory optimization 
653 |a Artificial intelligence 
653 |a Mathematical models 
653 |a Optimization techniques 
653 |a Carbon 
653 |a Back propagation networks 
653 |a Random noise 
653 |a Algorithms 
653 |a Linear programming 
653 |a Machine learning 
653 |a Energy consumption 
653 |a Optimization algorithms 
653 |a Energy conservation 
653 |a Parameter estimation 
653 |a Run time (computers) 
700 1 |a Wang, Yuemiao  |u PCI Technology Group Co., Ltd., Guangzhou 510665, China 
700 1 |a Liu, Yirong  |u Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510640, China 
700 1 |a Li, Xiaoyu  |u Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510640, China 
700 1 |a Chen, Fuwang  |u Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510640, China 
700 1 |a Lu, Shaofeng  |u Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou 510640, China 
773 0 |t Electronics  |g vol. 14, no. 24 (2025), p. 4939-4962 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3286275932/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3286275932/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3286275932/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch